Đang chuẩn bị liên kết để tải về tài liệu:
Lập Trình C# all Chap "NUMERICAL RECIPES IN C" part 138

Không đóng trình duyệt đến khi xuất hiện nút TẢI XUỐNG

Tham khảo tài liệu 'lập trình c# all chap "numerical recipes in c" part 138', công nghệ thông tin phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả | 15.2 Fitting Data to a Straight Line 661 as a distribution can be. Almost always the cause of too good a chi-square fit is that the experimenter in a fit of conservativism has overestimated his or her measurement errors. Very rarely too good a chi-square signals actual fraud data that has been fudged to fit the model. A rule of thumb is that a typical value of x2 for a moderately good fit is X2 v. More precise is the statement that the x2 statistic has a mean v and a standard deviation V v and asymptotically for large v becomes normally distributed. In some cases the uncertainties associated with a set of measurements are not known in advance and considerations related to x2 fitting are used to derive a value for a. If we assume that all measurements have the same standard deviation ai a and that the model does fit well then we can proceed by first assigning an arbitrary constant a to all points next fitting for the model parameters by minimizing x2 and finally recomputing X y - X tfHN - M i 1 15.1.6 Obviously this approach prohibits an independent assessment of goodness-of-fit a fact occasionally missed by its adherents. When however the measurement error is not known this approach at least allows some kind of error bar to be assigned to the points. If we take the derivative of equation 15.1.5 with respect to the parameters ak we obtain equations that must hold at the chi-square minimum n _ X A - y xi f dy xj .ak . . . M 02 A @ak J i 1 i k 1 . M 15.1.7 Equation 15.1.7 is in general a set of M nonlinear equations for the M unknown ak. Various of the procedures described subsequently in this chapter derive from 15.1.7 and its specializations. CITED REFERENCES AND FURTHER READING Bevington P.R. 1969 Data Reduction and Error Analysis for the Physical Sciences New York McGraw-Hill Chapters 1-4. von Mises R. 1964 Mathematical Theory of Probability and Statistics New York Academic Press VI.C. 1 15.2 Fitting Data to a Straight Line Sample page from NUMERICAL RECIPES IN C

Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.