Báo cáo tài liệu vi phạm
Giới thiệu
Kinh doanh - Marketing
Kinh tế quản lý
Biểu mẫu - Văn bản
Tài chính - Ngân hàng
Công nghệ thông tin
Tiếng anh ngoại ngữ
Kĩ thuật công nghệ
Khoa học tự nhiên
Khoa học xã hội
Văn hóa nghệ thuật
Sức khỏe - Y tế
Văn bản luật
Nông Lâm Ngư
Kỹ năng mềm
Luận văn - Báo cáo
Giải trí - Thư giãn
Tài liệu phổ thông
Văn mẫu
THỊ TRƯỜNG NGÀNH HÀNG
NÔNG NGHIỆP, THỰC PHẨM
Gạo
Rau hoa quả
Nông sản khác
Sữa và sản phẩm
Thịt và sản phẩm
Dầu thực vật
Thủy sản
Thức ăn chăn nuôi, vật tư nông nghiệp
CÔNG NGHIỆP
Dệt may
Dược phẩm, Thiết bị y tế
Máy móc, thiết bị, phụ tùng
Nhựa - Hóa chất
Phân bón
Sản phẩm gỗ, Hàng thủ công mỹ nghệ
Sắt, thép
Ô tô và linh kiện
Xăng dầu
DỊCH VỤ
Logistics
Tài chính-Ngân hàng
NGHIÊN CỨU THỊ TRƯỜNG
Hoa Kỳ
Nhật Bản
Trung Quốc
Hàn Quốc
Châu Âu
ASEAN
BẢN TIN
Bản tin Thị trường hàng ngày
Bản tin Thị trường và dự báo tháng
Bản tin Thị trường giá cả vật tư
Tìm
Danh mục
Kinh doanh - Marketing
Kinh tế quản lý
Biểu mẫu - Văn bản
Tài chính - Ngân hàng
Công nghệ thông tin
Tiếng anh ngoại ngữ
Kĩ thuật công nghệ
Khoa học tự nhiên
Khoa học xã hội
Văn hóa nghệ thuật
Y tế sức khỏe
Văn bản luật
Nông lâm ngư
Kĩ năng mềm
Luận văn - Báo cáo
Giải trí - Thư giãn
Tài liệu phổ thông
Văn mẫu
NGÀNH HÀNG
NÔNG NGHIỆP, THỰC PHẨM
Gạo
Rau hoa quả
Nông sản khác
Sữa và sản phẩm
Thịt và sản phẩm
Dầu thực vật
Thủy sản
Thức ăn chăn nuôi, vật tư nông nghiệp
CÔNG NGHIỆP
Dệt may
Dược phẩm, Thiết bị y tế
Máy móc, thiết bị, phụ tùng
Nhựa - Hóa chất
Phân bón
Sản phẩm gỗ, Hàng thủ công mỹ nghệ
Sắt, thép
Ô tô và linh kiện
Xăng dầu
DỊCH VỤ
Logistics
Tài chính-Ngân hàng
NGHIÊN CỨU THỊ TRƯỜNG
Hoa Kỳ
Nhật Bản
Trung Quốc
Hàn Quốc
Châu Âu
ASEAN
BẢN TIN
Bản tin Thị trường hàng ngày
Bản tin Thị trường và dự báo tháng
Bản tin Thị trường giá cả vật tư
Thông tin
Tài liệu Xanh là gì
Điều khoản sử dụng
Chính sách bảo mật
0
Trang chủ
Công Nghệ Thông Tin
Cơ sở dữ liệu
Data Mining and Knowledge Discovery Handbook, 2 Edition part 28
Đang chuẩn bị liên kết để tải về tài liệu:
Data Mining and Knowledge Discovery Handbook, 2 Edition part 28
Hoài Trung
61
10
pdf
Không đóng trình duyệt đến khi xuất hiện nút TẢI XUỐNG
Tải xuống
Data Mining and Knowledge Discovery Handbook, 2 Edition part 28. Knowledge Discovery demonstrates intelligent computing at its best, and is the most desirable and interesting end-product of Information Technology. To be able to discover and to extract knowledge from data is a task that many researchers and practitioners are endeavoring to accomplish. There is a lot of hidden knowledge waiting to be discovered – this is the challenge created by today’s abundance of data. Data Mining and Knowledge Discovery Handbook, 2nd Edition organizes the most current concepts, theories, standards, methodologies, trends, challenges and applications of data mining (DM) and knowledge discovery. | 250 Jerzy W. Grzymala-Busse independent variables and the decision is a dependent variable. A very simple example of such a table is presented as Table 13.1 in which attributes are Temperature Headache Weakness Nausea and the decision is Flu. The set of all cases labeled by the same decision value is called a concept. For Table 13.1 case set 1 2 4 5 is a concept of all cases affected by flu for each case from this set the corresponding value of Flu is yes . Table 13.1. An Example of a Dataset. Case Attributes Temperature Headache Weakness Nausea Decision Flu 1 veryJiigli yes yes no yes 2 high yes no yes yes 3 normal no no no no 4 normal yes yes yes yes 5 high no yes no yes 6 high no no no no 7 normal no yes no no Note that input data may be affected by errors. An example of such a data set is presented in Table 13.2. The case 7 has value 42.5 for Weakness an obvious error since the attribute Weakness is symbolic with possible values yes and no. Such errors must be corrected before rule induction. Table 13.2. An Example of an Erroneous Dataset Case Attributes Temperature Headache Weakness Nausea Decision Flu 1 veryJiigli yes yes no yes 2 high yes no yes yes 3 normal no no no no 4 normal yes yes yes yes 5 high no yes no yes 6 high no no no no 7 normal no 42.5 no no Another problem is caused by numerical attributes for example Temperature may be represented by real numbers as in Table 13.3. Obviously numerical attributes must be converted into symbolic attributes before or during rule induction. The process of converting numerical attributes into symbolic attributes is called discretization or quantization . 13 Rule Induction 251 Table 13.3. An Example of a Dataset with a Numerical Attribute. Case Attributes Temperature Headache Weakness Nausea Decision Flu 1 41.6 yes yes no yes 2 39.8 yes no yes yes 3 36.8 no no no no 4 37.0 yes yes yes yes 5 38.8 no yes no yes 6 40.2 no no no no 7 36.6 no yes no no Input data may be incomplete i.e. some attributes may have missing .
TÀI LIỆU LIÊN QUAN
Data Mining and Knowledge Discovery in Real Life Applications
Bài giảng Khai mở dữ liệu: Từ khám phá tri thức đến khai mỏ dữ liệu (Knowledge Discovery in Databases - Data Mining)
Data mining: Concepts and Techniques (Third edition) - Part 1
KNODWAT: A scientific framework application for testing knowledge discovery methods for the biomedical domain
ADVANCES IN DATA MINING KNOWLEDGE DISCOVERY AND APPLICATIONS
Descriptive phrase extraction in text mining
Data mining: Concepts and Techniques (Third edition) - Part 2
DrugQuest - a text mining workflow for drug association discovery
Quantifying and filtering knowledge generated by literature based discovery
Mining and applications of repeating patterns
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.