Báo cáo tài liệu vi phạm
Giới thiệu
Kinh doanh - Marketing
Kinh tế quản lý
Biểu mẫu - Văn bản
Tài chính - Ngân hàng
Công nghệ thông tin
Tiếng anh ngoại ngữ
Kĩ thuật công nghệ
Khoa học tự nhiên
Khoa học xã hội
Văn hóa nghệ thuật
Sức khỏe - Y tế
Văn bản luật
Nông Lâm Ngư
Kỹ năng mềm
Luận văn - Báo cáo
Giải trí - Thư giãn
Tài liệu phổ thông
Văn mẫu
THỊ TRƯỜNG NGÀNH HÀNG
NÔNG NGHIỆP, THỰC PHẨM
Gạo
Rau hoa quả
Nông sản khác
Sữa và sản phẩm
Thịt và sản phẩm
Dầu thực vật
Thủy sản
Thức ăn chăn nuôi, vật tư nông nghiệp
CÔNG NGHIỆP
Dệt may
Dược phẩm, Thiết bị y tế
Máy móc, thiết bị, phụ tùng
Nhựa - Hóa chất
Phân bón
Sản phẩm gỗ, Hàng thủ công mỹ nghệ
Sắt, thép
Ô tô và linh kiện
Xăng dầu
DỊCH VỤ
Logistics
Tài chính-Ngân hàng
NGHIÊN CỨU THỊ TRƯỜNG
Hoa Kỳ
Nhật Bản
Trung Quốc
Hàn Quốc
Châu Âu
ASEAN
BẢN TIN
Bản tin Thị trường hàng ngày
Bản tin Thị trường và dự báo tháng
Bản tin Thị trường giá cả vật tư
Tìm
Danh mục
Kinh doanh - Marketing
Kinh tế quản lý
Biểu mẫu - Văn bản
Tài chính - Ngân hàng
Công nghệ thông tin
Tiếng anh ngoại ngữ
Kĩ thuật công nghệ
Khoa học tự nhiên
Khoa học xã hội
Văn hóa nghệ thuật
Y tế sức khỏe
Văn bản luật
Nông lâm ngư
Kĩ năng mềm
Luận văn - Báo cáo
Giải trí - Thư giãn
Tài liệu phổ thông
Văn mẫu
NGÀNH HÀNG
NÔNG NGHIỆP, THỰC PHẨM
Gạo
Rau hoa quả
Nông sản khác
Sữa và sản phẩm
Thịt và sản phẩm
Dầu thực vật
Thủy sản
Thức ăn chăn nuôi, vật tư nông nghiệp
CÔNG NGHIỆP
Dệt may
Dược phẩm, Thiết bị y tế
Máy móc, thiết bị, phụ tùng
Nhựa - Hóa chất
Phân bón
Sản phẩm gỗ, Hàng thủ công mỹ nghệ
Sắt, thép
Ô tô và linh kiện
Xăng dầu
DỊCH VỤ
Logistics
Tài chính-Ngân hàng
NGHIÊN CỨU THỊ TRƯỜNG
Hoa Kỳ
Nhật Bản
Trung Quốc
Hàn Quốc
Châu Âu
ASEAN
BẢN TIN
Bản tin Thị trường hàng ngày
Bản tin Thị trường và dự báo tháng
Bản tin Thị trường giá cả vật tư
Thông tin
Tài liệu Xanh là gì
Điều khoản sử dụng
Chính sách bảo mật
0
Trang chủ
Công Nghệ Thông Tin
Cơ sở dữ liệu
Data Mining and Knowledge Discovery Handbook, 2 Edition part 42
Đang chuẩn bị liên kết để tải về tài liệu:
Data Mining and Knowledge Discovery Handbook, 2 Edition part 42
Xuân Vân
55
10
pdf
Không đóng trình duyệt đến khi xuất hiện nút TẢI XUỐNG
Tải xuống
Data Mining and Knowledge Discovery Handbook, 2 Edition part 42. Knowledge Discovery demonstrates intelligent computing at its best, and is the most desirable and interesting end-product of Information Technology. To be able to discover and to extract knowledge from data is a task that many researchers and practitioners are endeavoring to accomplish. There is a lot of hidden knowledge waiting to be discovered – this is the challenge created by today’s abundance of data. Data Mining and Knowledge Discovery Handbook, 2nd Edition organizes the most current concepts, theories, standards, methodologies, trends, challenges and applications of data mining (DM) and knowledge discovery. | 390 Alex A. Freitas the quality of a product and minimize its manufacturing cost in a factory. In the context of data mining a typical example is in the data preprocessing task of attribute selection to minimize the error rate of a classifier trained with the selected attributes and to minimize the number of selected attributes. The conventional approach to cope with such multi-objective optimization problems using evolutionary algorithms is to convert the problem into a singleoptimization problem. This is typically done by using a weighted formula in the fitness function where each objective has an associated weight reflecting its relative importance. For instance in the above example of two-objective attribute selection the fitness function could be defined as say 2 3 classification-error 1 3 Num-ber_of_selected_attributes . However this conventional approach has several problems. First it mixes non-commensurable objectives classification error and number of selected attributes in the previous example into the same formula. This has at least the disadvantage that the value returned by the fitness function is not meaningful to the user. Second note that different weights will lead to different selected attributes since different weights represent different trade-offs between the two conflicting objectives. Unfortunately the weights are usually defined in an ad-hoc fashion. Hence when the EA returns the best attribute subset to the user the user is presented with a solution that represents just one possible trade-off between the objectives. The user misses the opportunity to analyze different trade-offs. Of course we could address this problem by running the EA multiple times with different weights for the objectives in each run and return the multiple solutions to the user. However this would be very inefficient and we would still have the problems of deciding which weights should be used in each run how many runs we should perform and so how many solutions should
TÀI LIỆU LIÊN QUAN
Data Mining and Knowledge Discovery in Real Life Applications
Bài giảng Khai mở dữ liệu: Từ khám phá tri thức đến khai mỏ dữ liệu (Knowledge Discovery in Databases - Data Mining)
Data mining: Concepts and Techniques (Third edition) - Part 1
KNODWAT: A scientific framework application for testing knowledge discovery methods for the biomedical domain
ADVANCES IN DATA MINING KNOWLEDGE DISCOVERY AND APPLICATIONS
Descriptive phrase extraction in text mining
Data mining: Concepts and Techniques (Third edition) - Part 2
DrugQuest - a text mining workflow for drug association discovery
Quantifying and filtering knowledge generated by literature based discovery
Mining and applications of repeating patterns
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.