Báo cáo tài liệu vi phạm
Giới thiệu
Kinh doanh - Marketing
Kinh tế quản lý
Biểu mẫu - Văn bản
Tài chính - Ngân hàng
Công nghệ thông tin
Tiếng anh ngoại ngữ
Kĩ thuật công nghệ
Khoa học tự nhiên
Khoa học xã hội
Văn hóa nghệ thuật
Sức khỏe - Y tế
Văn bản luật
Nông Lâm Ngư
Kỹ năng mềm
Luận văn - Báo cáo
Giải trí - Thư giãn
Tài liệu phổ thông
Văn mẫu
THỊ TRƯỜNG NGÀNH HÀNG
NÔNG NGHIỆP, THỰC PHẨM
Gạo
Rau hoa quả
Nông sản khác
Sữa và sản phẩm
Thịt và sản phẩm
Dầu thực vật
Thủy sản
Thức ăn chăn nuôi, vật tư nông nghiệp
CÔNG NGHIỆP
Dệt may
Dược phẩm, Thiết bị y tế
Máy móc, thiết bị, phụ tùng
Nhựa - Hóa chất
Phân bón
Sản phẩm gỗ, Hàng thủ công mỹ nghệ
Sắt, thép
Ô tô và linh kiện
Xăng dầu
DỊCH VỤ
Logistics
Tài chính-Ngân hàng
NGHIÊN CỨU THỊ TRƯỜNG
Hoa Kỳ
Nhật Bản
Trung Quốc
Hàn Quốc
Châu Âu
ASEAN
BẢN TIN
Bản tin Thị trường hàng ngày
Bản tin Thị trường và dự báo tháng
Bản tin Thị trường giá cả vật tư
Tìm
Danh mục
Kinh doanh - Marketing
Kinh tế quản lý
Biểu mẫu - Văn bản
Tài chính - Ngân hàng
Công nghệ thông tin
Tiếng anh ngoại ngữ
Kĩ thuật công nghệ
Khoa học tự nhiên
Khoa học xã hội
Văn hóa nghệ thuật
Y tế sức khỏe
Văn bản luật
Nông lâm ngư
Kĩ năng mềm
Luận văn - Báo cáo
Giải trí - Thư giãn
Tài liệu phổ thông
Văn mẫu
NGÀNH HÀNG
NÔNG NGHIỆP, THỰC PHẨM
Gạo
Rau hoa quả
Nông sản khác
Sữa và sản phẩm
Thịt và sản phẩm
Dầu thực vật
Thủy sản
Thức ăn chăn nuôi, vật tư nông nghiệp
CÔNG NGHIỆP
Dệt may
Dược phẩm, Thiết bị y tế
Máy móc, thiết bị, phụ tùng
Nhựa - Hóa chất
Phân bón
Sản phẩm gỗ, Hàng thủ công mỹ nghệ
Sắt, thép
Ô tô và linh kiện
Xăng dầu
DỊCH VỤ
Logistics
Tài chính-Ngân hàng
NGHIÊN CỨU THỊ TRƯỜNG
Hoa Kỳ
Nhật Bản
Trung Quốc
Hàn Quốc
Châu Âu
ASEAN
BẢN TIN
Bản tin Thị trường hàng ngày
Bản tin Thị trường và dự báo tháng
Bản tin Thị trường giá cả vật tư
Thông tin
Tài liệu Xanh là gì
Điều khoản sử dụng
Chính sách bảo mật
0
Trang chủ
Công Nghệ Thông Tin
Cơ sở dữ liệu
Data Mining and Knowledge Discovery Handbook, 2 Edition part 71
Đang chuẩn bị liên kết để tải về tài liệu:
Data Mining and Knowledge Discovery Handbook, 2 Edition part 71
Thành Châu
66
10
pdf
Không đóng trình duyệt đến khi xuất hiện nút TẢI XUỐNG
Tải xuống
Data Mining and Knowledge Discovery Handbook, 2 Edition part 71. Knowledge Discovery demonstrates intelligent computing at its best, and is the most desirable and interesting end-product of Information Technology. To be able to discover and to extract knowledge from data is a task that many researchers and practitioners are endeavoring to accomplish. There is a lot of hidden knowledge waiting to be discovered – this is the challenge created by today’s abundance of data. Data Mining and Knowledge Discovery Handbook, 2nd Edition organizes the most current concepts, theories, standards, methodologies, trends, challenges and applications of data mining (DM) and knowledge discovery. | 680 Grigorios Tsoumakas Ioannis Katakis and Ioannis Vlahavas gw i 1 if A Y 0 otherwise Coverage evaluates how far we need on average to go down the ranked list of labels in order to cover all the relevant labels of the example. Cov y maxrAA 1 m AeYi Ranking loss expresses the number of times that irrelevant labels are ranked higher than relevant labels R-Loss m y Y1Y l Aa Afc ri a ri Ab aM e Yi x Y where Y is the complementary set of Y with respect to L. Average precision evaluates the average fraction of labels ranked above a particular label A e Yi which actually are in Y. riW AvgPrec 1 y y Y m i 1 Yil ACY 34.7.3 Hierarchical The hierarchical loss Cesa-Bianchi et al. 2006b is a modified version of the Hamming loss that takes into account an existing hierarchical structure of the labels. It examines the predicted labels in a top-down manner according to the hierarchy and whenever the prediction for a label is wrong the subtree rooted at that node is not considered further in the calculation of the loss. Let anc A be the set of all the ancestor nodes of A. The hierarchical loss is defined as follows H-Loss - y A A c YiAZi anc A n YiAZi 0 mi 1 Several other measures for hierarchical multi-label classification are examined in Moskovitch et al. 2006 Sun Lim 2001 . 34.8 Related Tasks One of the most popular supervised learning tasks is multi-class classification which involves a set of labels L where L 2. The critical difference with respect to multi-label classification is that each instance is associated with only one element of L instead of a subset of L. Jin and Ghahramani Jin Ghahramani 2002 call multiple-label problems the semisupervised classification problems where each example is associated with more than one classes but only one of those classes is the true class of the example. This task is not that common in real-world applications as the one we are studying. Multiple-instance or multi-instance learning is a variation of supervised learning where labels are
TÀI LIỆU LIÊN QUAN
Data Mining and Knowledge Discovery in Real Life Applications
Bài giảng Khai mở dữ liệu: Từ khám phá tri thức đến khai mỏ dữ liệu (Knowledge Discovery in Databases - Data Mining)
Data mining: Concepts and Techniques (Third edition) - Part 1
KNODWAT: A scientific framework application for testing knowledge discovery methods for the biomedical domain
ADVANCES IN DATA MINING KNOWLEDGE DISCOVERY AND APPLICATIONS
Descriptive phrase extraction in text mining
Data mining: Concepts and Techniques (Third edition) - Part 2
DrugQuest - a text mining workflow for drug association discovery
Quantifying and filtering knowledge generated by literature based discovery
Mining and applications of repeating patterns
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.