Báo cáo tài liệu vi phạm
Giới thiệu
Kinh doanh - Marketing
Kinh tế quản lý
Biểu mẫu - Văn bản
Tài chính - Ngân hàng
Công nghệ thông tin
Tiếng anh ngoại ngữ
Kĩ thuật công nghệ
Khoa học tự nhiên
Khoa học xã hội
Văn hóa nghệ thuật
Sức khỏe - Y tế
Văn bản luật
Nông Lâm Ngư
Kỹ năng mềm
Luận văn - Báo cáo
Giải trí - Thư giãn
Tài liệu phổ thông
Văn mẫu
THỊ TRƯỜNG NGÀNH HÀNG
NÔNG NGHIỆP, THỰC PHẨM
Gạo
Rau hoa quả
Nông sản khác
Sữa và sản phẩm
Thịt và sản phẩm
Dầu thực vật
Thủy sản
Thức ăn chăn nuôi, vật tư nông nghiệp
CÔNG NGHIỆP
Dệt may
Dược phẩm, Thiết bị y tế
Máy móc, thiết bị, phụ tùng
Nhựa - Hóa chất
Phân bón
Sản phẩm gỗ, Hàng thủ công mỹ nghệ
Sắt, thép
Ô tô và linh kiện
Xăng dầu
DỊCH VỤ
Logistics
Tài chính-Ngân hàng
NGHIÊN CỨU THỊ TRƯỜNG
Hoa Kỳ
Nhật Bản
Trung Quốc
Hàn Quốc
Châu Âu
ASEAN
BẢN TIN
Bản tin Thị trường hàng ngày
Bản tin Thị trường và dự báo tháng
Bản tin Thị trường giá cả vật tư
Tìm
Danh mục
Kinh doanh - Marketing
Kinh tế quản lý
Biểu mẫu - Văn bản
Tài chính - Ngân hàng
Công nghệ thông tin
Tiếng anh ngoại ngữ
Kĩ thuật công nghệ
Khoa học tự nhiên
Khoa học xã hội
Văn hóa nghệ thuật
Y tế sức khỏe
Văn bản luật
Nông lâm ngư
Kĩ năng mềm
Luận văn - Báo cáo
Giải trí - Thư giãn
Tài liệu phổ thông
Văn mẫu
NGÀNH HÀNG
NÔNG NGHIỆP, THỰC PHẨM
Gạo
Rau hoa quả
Nông sản khác
Sữa và sản phẩm
Thịt và sản phẩm
Dầu thực vật
Thủy sản
Thức ăn chăn nuôi, vật tư nông nghiệp
CÔNG NGHIỆP
Dệt may
Dược phẩm, Thiết bị y tế
Máy móc, thiết bị, phụ tùng
Nhựa - Hóa chất
Phân bón
Sản phẩm gỗ, Hàng thủ công mỹ nghệ
Sắt, thép
Ô tô và linh kiện
Xăng dầu
DỊCH VỤ
Logistics
Tài chính-Ngân hàng
NGHIÊN CỨU THỊ TRƯỜNG
Hoa Kỳ
Nhật Bản
Trung Quốc
Hàn Quốc
Châu Âu
ASEAN
BẢN TIN
Bản tin Thị trường hàng ngày
Bản tin Thị trường và dự báo tháng
Bản tin Thị trường giá cả vật tư
Thông tin
Tài liệu Xanh là gì
Điều khoản sử dụng
Chính sách bảo mật
0
Trang chủ
Công Nghệ Thông Tin
Cơ sở dữ liệu
Data Mining and Knowledge Discovery Handbook, 2 Edition part 78
Đang chuẩn bị liên kết để tải về tài liệu:
Data Mining and Knowledge Discovery Handbook, 2 Edition part 78
Hải Nhi
66
10
pdf
Không đóng trình duyệt đến khi xuất hiện nút TẢI XUỐNG
Tải xuống
Data Mining and Knowledge Discovery Handbook, 2 Edition part 78. Knowledge Discovery demonstrates intelligent computing at its best, and is the most desirable and interesting end-product of Information Technology. To be able to discover and to extract knowledge from data is a task that many researchers and practitioners are endeavoring to accomplish. There is a lot of hidden knowledge waiting to be discovered – this is the challenge created by today’s abundance of data. Data Mining and Knowledge Discovery Handbook, 2nd Edition organizes the most current concepts, theories, standards, methodologies, trends, challenges and applications of data mining (DM) and knowledge discovery. | 750 Gary M. Weiss The learned decision boundaries are displayed in Figure 38.2A and Figure 38.2B using dashed lines. The learned boundary in Figure 38.2A is far off from the true boundary and excludes a substantial portion of P3. The inclusion of additional positive examples in Figure 38.2B addresses the problem with absolute rarity and causes all of P3 to be covered learned although some examples not belonging to P3 will be mistakenly assigned a positive label. Figure 38.2C which includes additional positive and negative examples corrects this last problem the learned decision boundary nearly overlaps the true boundary and hence is not shown . Figures 38.2B and 38.2C demonstrate that additional data can address the problem with absolute rarity. Of course in practice it is not always possible to obtain additional training data. Another problem associated with mining rare cases is reflected by the phrase like a needle in a haystack. The difficulty is not so much due to the needle being small or there being only one needle but by the fact that the needle is obscured by a huge number of strands of hay. Similarly in Data Mining rare cases may be obscured by common cases relative rarity . This is especially a problem when Data Mining algorithms rely on greedy search heuristics that examine one variable at a time since rare cases may depend on the conjunction of many conditions and any single condition in isolation may not provide much guidance. As a specific example of the problem with relative rarity consider the association rule mining problem described earlier where we want to be able to detect the association between mop and broom. Because this association occurs rarely this association can only be found if the minimum support minsup threshold the number of times the association is found in the data is set very low. However setting this threshold low would cause a combinatorial explosion because frequently occurring items will be associated with one another in an .
TÀI LIỆU LIÊN QUAN
Data Mining and Knowledge Discovery in Real Life Applications
Bài giảng Khai mở dữ liệu: Từ khám phá tri thức đến khai mỏ dữ liệu (Knowledge Discovery in Databases - Data Mining)
Data mining: Concepts and Techniques (Third edition) - Part 1
KNODWAT: A scientific framework application for testing knowledge discovery methods for the biomedical domain
ADVANCES IN DATA MINING KNOWLEDGE DISCOVERY AND APPLICATIONS
Descriptive phrase extraction in text mining
Data mining: Concepts and Techniques (Third edition) - Part 2
DrugQuest - a text mining workflow for drug association discovery
Quantifying and filtering knowledge generated by literature based discovery
Mining and applications of repeating patterns
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.