Báo cáo tài liệu vi phạm
Giới thiệu
Kinh doanh - Marketing
Kinh tế quản lý
Biểu mẫu - Văn bản
Tài chính - Ngân hàng
Công nghệ thông tin
Tiếng anh ngoại ngữ
Kĩ thuật công nghệ
Khoa học tự nhiên
Khoa học xã hội
Văn hóa nghệ thuật
Sức khỏe - Y tế
Văn bản luật
Nông Lâm Ngư
Kỹ năng mềm
Luận văn - Báo cáo
Giải trí - Thư giãn
Tài liệu phổ thông
Văn mẫu
THỊ TRƯỜNG NGÀNH HÀNG
NÔNG NGHIỆP, THỰC PHẨM
Gạo
Rau hoa quả
Nông sản khác
Sữa và sản phẩm
Thịt và sản phẩm
Dầu thực vật
Thủy sản
Thức ăn chăn nuôi, vật tư nông nghiệp
CÔNG NGHIỆP
Dệt may
Dược phẩm, Thiết bị y tế
Máy móc, thiết bị, phụ tùng
Nhựa - Hóa chất
Phân bón
Sản phẩm gỗ, Hàng thủ công mỹ nghệ
Sắt, thép
Ô tô và linh kiện
Xăng dầu
DỊCH VỤ
Logistics
Tài chính-Ngân hàng
NGHIÊN CỨU THỊ TRƯỜNG
Hoa Kỳ
Nhật Bản
Trung Quốc
Hàn Quốc
Châu Âu
ASEAN
BẢN TIN
Bản tin Thị trường hàng ngày
Bản tin Thị trường và dự báo tháng
Bản tin Thị trường giá cả vật tư
Tìm
Danh mục
Kinh doanh - Marketing
Kinh tế quản lý
Biểu mẫu - Văn bản
Tài chính - Ngân hàng
Công nghệ thông tin
Tiếng anh ngoại ngữ
Kĩ thuật công nghệ
Khoa học tự nhiên
Khoa học xã hội
Văn hóa nghệ thuật
Y tế sức khỏe
Văn bản luật
Nông lâm ngư
Kĩ năng mềm
Luận văn - Báo cáo
Giải trí - Thư giãn
Tài liệu phổ thông
Văn mẫu
NGÀNH HÀNG
NÔNG NGHIỆP, THỰC PHẨM
Gạo
Rau hoa quả
Nông sản khác
Sữa và sản phẩm
Thịt và sản phẩm
Dầu thực vật
Thủy sản
Thức ăn chăn nuôi, vật tư nông nghiệp
CÔNG NGHIỆP
Dệt may
Dược phẩm, Thiết bị y tế
Máy móc, thiết bị, phụ tùng
Nhựa - Hóa chất
Phân bón
Sản phẩm gỗ, Hàng thủ công mỹ nghệ
Sắt, thép
Ô tô và linh kiện
Xăng dầu
DỊCH VỤ
Logistics
Tài chính-Ngân hàng
NGHIÊN CỨU THỊ TRƯỜNG
Hoa Kỳ
Nhật Bản
Trung Quốc
Hàn Quốc
Châu Âu
ASEAN
BẢN TIN
Bản tin Thị trường hàng ngày
Bản tin Thị trường và dự báo tháng
Bản tin Thị trường giá cả vật tư
Thông tin
Tài liệu Xanh là gì
Điều khoản sử dụng
Chính sách bảo mật
0
Trang chủ
Công Nghệ Thông Tin
Đồ họa - Thiết kế - Flash
Giáo trình xử lý ảnh y tế Tập 1a P10
Đang chuẩn bị liên kết để tải về tài liệu:
Giáo trình xử lý ảnh y tế Tập 1a P10
Mỹ Hoàn
90
10
pdf
Không đóng trình duyệt đến khi xuất hiện nút TẢI XUỐNG
Tải xuống
Thuộc tính là h(n1, n2) tăng lên một cách nhanh chóng được xem xét khi lựa chọn phương án lọc. Không phụ thuộc vào kích thước của ảnh, đưa ra phép nhân giứa đáp ứng tần số của ảnh và đáp ứng tần số của bộ lọc, và chúng ta chú ý rằng lỗi wrapapound chỉ xuất hiện ở miền nhỏ nằm ở đường bao của ảnh và trong phần lớn trường hợp lỗi này có thể bỏ qua. | F n 21 k w. k 6.6 n 0 ở đây f k f kT và WN e j N. WN được gọi là hạt nhân của phép biến đổi. Tổng quát F n có dạng F n A n ejộ n Ký hiệu A n ộ n gọi là phổ khuyếch đại và phổ pha của F n . 6.2.1 Biến đổi ngược DFT Hàm f k là biến đổi ngược DFT của F n cho bởi theo biểu thức f k yF n ej nk N n 0 Chứng minh Từ định nghĩa của DFT 6.7 6.8 1 N-1 1 N -1 _ XF n WNk -1 y Xf m W.-nm WNn N n 0 N n 0 L 1 N-1 N-1 N X f m X w-m N m 0 n 0 N-1 m 0 6.9 N-1 Đặt 5 X wn k-m N n 0 Nếu k m thì s N. Nếu k m chúng ta có thể viết s 1 Wn k -m Wn 2 k -m . Wn N-1 k -m hoặc 1-W1N k-m I-W- 1 ữj 2 k-m 1 e j 5y k-m 1 - e N Khi e j2ĩĩ m 1 và ej2k n c m 1 với k m vì vậy s 0 với k m . Vì vậy biểu thức 6. 9 có thể rút gọn thành 76 N Ị-Ì F nWNk f -N n 0 Kết quả này giống như biểu thức 6.8 . Khi f k có thể rút ra từ F n và ngược lại chúng gọi là cặp biến đổi. Cặp biến đổi này có dạng f k F n Chú ý từ biểu thức 6.8 ta có thể dễ dàng chứng minh 1 N- . j 2 n k N f k N - ỵ F n e N N n 0 1 N-1 j 2 .nk 1 ZF n eN N n 0 f k 6.10 Mặc dù f k được xác định trên miền k e 0 N nó vẫn là tín hiệu tuần hoàn với chu kỳ NT. T được bao hàm và rút ra từ biểu thức 6.5 . 6.2.2 Một vài tính chất của DFT Tuyến tính. Nếu ta có hai dãy tuần hoàn cùng f1 n và f2 n và cả hai dãy này tuần hoàn với chu kỳ N được dùng để tính f3 k ạfi k bf2 k 6.11 là kết quả của biến đổi DFT f3 n cho bởi F3 n ạF1 n bF2 n 6.12 ở đây ạ b là hằng số và F1 n DFT của f1 k F2 n DFT của f2 k Tính đối xứng. Tính đối xứng của DFT rất hay được dùng. N-1 F N - n y f k W -KN k 0 N-1 _-2tf 2 N - 1 -N p -nk y f k e N e N k 0 N-1 z f k e k 0 .2 1---nk e N 77 Nếu f k là thực thì 2x -1-- .nk N F N - n N-1 X f k e F n 6.13 k 0 Dấu có nghĩa là liên hợp phức. Tích chập tuần hoàn. Coi fi k và f2 k là hai dãy tuần hoàn có chu kỳ N với biến đổi Fourier rời rạc là Fi n và F2 n . Xem xét tích F n2 .F n2 N-1 khi F1 1 X fi k1 Nn k k1 0 F2 2 X k 1M k2 0 N-1 N-1 F1 1 .F1 n1 X f1 k1 iW.X f2 k1 Wk2 k1 0 k2 0 N -1 N -1 XX f1 k1 Á k. WW -- W. . k1 0 n 0 và tại các vị trí n2 n2 n .
TÀI LIỆU LIÊN QUAN
Đề thi môn Xử Lý Ảnh
BÀI GIẢNG XỬ LÝ ẢNH
Kinh nghiệm chụp và xử lý ảnh số cho người nghiệp dư
BÀI GIẢNG XỬ LÝ ÂM THANH VÀ HÌNH ẢNH
Xử lý ảnh số - Khôi phục ảnh part 1
Xử lý ảnh số - Khôi phục ảnh part 2
Xử lý ảnh số - Khôi phục ảnh part 3
Xử lý ảnh số - Khôi phục ảnh part 4
Xử lý ảnh số - Khôi phục ảnh part 5
Xử lý ảnh số - Khôi phục ảnh part 6
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.