Đang chuẩn bị liên kết để tải về tài liệu:
Đề tài " LÝ THUYẾT PHIẾM HÀM MẬT ĐỘ "

Không đóng trình duyệt đến khi xuất hiện nút TẢI XUỐNG

Ý tưởng dùng hàm mật độ để mô tả các tính chất của hệ electron được nêu trong các công trình của Llewellyn Hilleth Thomas và Enrico Fermi ngay từ khi cơ học lượng tử mới ra đời. Đến năm 1964, Pierre Hohenberg và Walter Kohn đã chứng minh chặt chẽ hai định lý cơ bản là nền tảng của lý thuyết phiếm hàm mật độ. Hai định lý khẳng định năng lượng ở trạng thái cơ bản là một phiếm hàm của mật độ electron, do đó về nguyên tắc có thể mô tả hầu hết các tính chất vật lý của hệ điện. | Trần Văn Thảo Cao hoc VLLT DHKHTN K19 CHƯƠNG II TỒNG QUAN VỀ LÝ THUYẾT PHIẾM HÀM MẬT ĐỘ 1. MỞ ĐẦU - TỔNG QUAN. Ý tưởng dùng hàm mật độ để mô tả các tính chất của hệ electron được nêu trong các công trình của Llewellyn Hilleth Thomas và Enrico Fermi ngay từ khi cơ học lượng tử mới ra đời. Đến năm 1964 Pierre Hohenberg và Walter Kohn đã chứng minh chặt chẽ hai định lý cơ bản là nền tảng của lý thuyết phiếm hàm mật độ. Hai định lý khẳng định năng lượng ở trạng thái cơ bản là một phiếm hàm của mật độ electron do đó về nguyên tắc có thể mô tả hầu hết các tính chất vật lý của hệ điện tử qua hàm mật độ. Một năm sau W. Kohn và Lu Jeu Sham nêu ra qui trình tính toán để thu được gần đúng mật độ electron ở trạng thái cơ bản trong khuôn khổ lý thuyết DFT. Từ những năm 1980 đến nay cùng với sự phát triển tốc độ tính toán của máy tính điện tử lý thuyết DFT được sử dụng rộng rãi và hiệu quả trong các ngành khoa học như vật lý chất rắn hóa học lượng tử vật lý sinh học khoa học vật liệu . . W. Kohn đã được ghi nhận những đóng góp của ông cho việc phát triển lý thuyết phiếm hàm mật độ bằng giải thưởng Nobel Hóa học năm 1998. Gần đúng Thomas-Fermi Thomas-Fermi Approximation Trong gần đúng Thomas - Fermi động năng của hệ electron được lấy gần đúng bằng một phiếm hàm tường minh của mật độ có biểu thức tương tự như biểu thức của hệ electron không tương tác năng lượng tương tác giữa các electron được gần đúng bằng năng lượng tương tác tĩnh điện. Dạng tường minh của phiếm hàm năng lượng được viết như sau íừidr2 I Ị v. í.t r n r ár. Mật độ electron ở trạng thái cơ bản được rút ra từ điều kiện cực tiểu của phiếm hàm năng lượng chẳng hạn bằng phương pháp nhân tử Lagrange. Kết quả của phép gần đúng này khi áp dụng cho các hệ electron trong nguyên tử phân tử là khá khiêm tốn. Mặc dù cho dáng điệu của mật độ electron tương đối chính xác về mặt định tính nhưng hoàn toàn không phù hợp về định lượng. Từ đó dẫn đến những kết quả phi vật lý chẳng hạn như không mô tả được cấu trúc lớp của electron .

Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.