Đang chuẩn bị liên kết để tải về tài liệu:
Analytic Number Theory A Tribute to Gauss and Dirichlet Part 7

Không đóng trình duyệt đến khi xuất hiện nút TẢI XUỐNG

Tham khảo tài liệu 'analytic number theory a tribute to gauss and dirichlet part 7', kỹ thuật - công nghệ, cơ khí - chế tạo máy phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả | 112 JENS FUNKE In Proposition 4.11 we will give an extension of Theorem 2.1 to F having logarithmic singularities inside D. By the usual unfolding argument see BF06 section 4 we have Lemma 2.2. Let N 0 or N 0 such that N ị Qx 2. Then aN v E i F z 0 VvX z . xep Ln rx d If F is smooth on X then by Theorem 2.17 we obtain aN v tF N E - L i ddcF z 0 ựVX z N 0 XE1 Ln lrx D aN v E ddcF z e VVX z N 0 N ị Qx 2 xep Ln x d For N m2 unfolding is typically not valid since in that case rx is trivial. In the proof of Theorem 7.8 in BF06 we outline Lemma 2.3. Let N m2. Then aN v E i dlF z Ede0 VvX 7z x L 2niJv . .d dF z Eeũ VVX Yz I -- M Yep Ồ í SdỖF z E - X . -- M Y p Note that with our choice of the particular lattice L in 2.2 we actually have r L-m2 m and as representatives we can take m _2m k 0 . m 1 . Finally we have 2.18 a0 v y F z E T vX z . We split this integral into two pieces a 0 for X 0 and a v a0 v a 0 for X 0. However unless F is at most mildly increasing the two individual integrals will not converge and have to be regularized in a certain manner following Bor98 BF06 . For a 0 v we have only one T-equivalence class of isotropic lines in L since r has only one cusp. We denote by 0 QX0 the isotropic line spanned by the primitive vector in L X0 02 . Note that the pointwise stabilizer of 0 is rTO the usual parabolic subgroup of r. We obtain Lemma 2.4. 2.19 a0 -L r 9 F zH 2n J M CM POINTS AND WEIGHT 3 2 MODULAR FORMS 113 2.20 a0 v -L ỉreB 4 F z E Ể dỆ VVnX0 yz I n Jm yeĩ rn -x J Ồ re3 4dF z E Ể Ệ VVnX0 yz I n Jm yer rn -x J - 21 rt ddF z E ỉ Ệ0 VVnX0 yz . n Jm Here 2 indicates that the sum only extends over n 0. 3. The lift of modular functions 3.1. The lift of the constant function. The modular trace of the constant function F 1 is already very interesting. In that case the modular trace of index N is the geometric degree of the 0-cycle Z N 3.1 t1 N deg Z N E 1. X L N I X I For p 1 this is twice the famous Kronecker-Hurwitz class number H N of positive definite binary .

Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.