Đang chuẩn bị liên kết để tải về tài liệu:
Báo cáo toán học: "A note on random minimum length spanning trees"

Không đóng trình duyệt đến khi xuất hiện nút TẢI XUỐNG

Tuyển tập các báo cáo nghiên cứu khoa học trên tạp chí toán học quốc tế đề tài: A note on random minimum length spanning trees. | A note on random minimum length spanning trees Alan Frieze Miklos Ruszinkct Lubos Thoma Department of Mathematical Sciences Carnegie Mellon University Pittsburgh PA15213 UsA alan@random.math.cmu.edu ruszinko@lutra.sztaki.hu thoma@qwes.math.cmu.edu Submitted June 28 2000 Accepted August 11 2000 Abstract Consider a connected r-regular n-vertex graph G with random independent edge lengths each uniformly distributed on 0 1 . Let mst G be the expected length of a minimum spanning tree. We show in this paper that if G is sufficiently highly edge connected then the expected length of a minimum spanning tree is nc 3 . If we omit the edge connectivity condition then it is at most n c 3 1 . 1 Introduction Given a connected simple graph G V E with edge lengths x xe e 2 E let mst G x denote the minimum length of a spanning tree. When X Xe e 2 E is a family of independent random variables each uniformly distributed on the interval 0 1 denote the expected value E mst G X by mst G . Consider the complete graph Kn. It is known see 2 that as n 1 mst Kn 3 . Here 3 ịj3 1.202. Beveridge Frieze and McDiarmid 1 proved two theorems that together generalise the previous results of 2 3 5 . Supported in part by NSF Grant CCR9818411 email alan@random.math.cmu.edu 1 Permanent Address Computer and Automation Research Institute of the Hungarian Academy of Sciences Budapest P.O.Box 63 Hungary-1518. Supported in part by OTKA Grants T 030059 and T 29074 FKFP 0607 1999. email ruszinko@lutra.sztaki.hu Supported in part by NSF grant DMS-9970622. email thoma@qwes.math.cmu.edu 1 THE ELECTRONIC .JOURNAL OF COMBINATORICS 7 2000 R41 2 Theorem 1 For any n-vertex connected graph G mst G A c 3 - 61 where A A G denotes the maximum degree in G and 61 61 A 0 as A 1. For an upper bound we need expansion properties of G. Theorem 2 Let a a r O r-1 3 and let p p r and r tend to infinity with r. Suppose that the graph G V E is connected and satisfies r s A 1 a r 1 where s S G denotes the minimum degree in G. Suppose

Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.