Đang chuẩn bị liên kết để tải về tài liệu:
Báo cáo toán học: "Packing 10 or 11 Unit Squares in a Square"

Không đóng trình duyệt đến khi xuất hiện nút TẢI XUỐNG

Tuyển tập các báo cáo nghiên cứu khoa học ngành toán học tạp chí toán học quốc tế đề tài: Packing 10 or 11 Unit Squares in a Square | Packing 10 or 11 Unit Squares in a Square Walter Stromquist Department of Mathematics Bryn Mawr College Bryn Mawr Pennsylvania USA walters@chesco.com Submitted Nov 26 2002 Accepted Feb 26 2003 Published Mar 18 2003 MR Subject Classifications 05B40 52C15 Abstract Let s n be the side of the smallest square into which it is possible pack n unit squares. We show that s 10 3 ỵj 2 K 3.707 and that s 11 2 2 4 K 3.789. We also show that an optimal packing of 11 unit squares with orientations limited to 0 or 45 has side 2 2 9 3.886. These results prove Martin Gardner s conjecture that n 11 is the first case in which an optimal result requires a non-45 packing. Let s n be the side of the smallest square into which it is possible to pack n unit squares. It is known that s 1 1 s 2 s 3 s 4 2 s 5 2 y1 and that s 6 s 7 s 8 s 9 3. For larger n proofs of exact values of s n have been published only for n 14 15 24 35 and when n is a square. The first published proof that s 6 3 is by Kearney and Shiu 3 and the other results are reported in Erich Friedman s dynamic survey 1 . We prove here that s 10 3 ự2 3.707 Theorem 1 and that s 11 2 2 4 K 3.789 Theorem 2 . The 10-square packings in Figure 1 are optimal. The most efficient known packing of 11 squares shown in Figure 2 and due to Walter Trump has side about 3.8772 and includes unit squares tilted at about 40.182 . THE ELECTRONIC JOURNAL OF COMBINATORICS 10 2003 R8 1 s 3.8772 Figure 2 Best known packing of 11 squares tilt 40.182 s 3.886 Figure 3 Optimal 45 packing for n 11 In the case of n 11 we also show that any 45 packing that is one in which the unit squares are tilted only at 0 or 45 with respect to the bounding square must have side at least 2 2 9 tt 3.886 Theorem 3 . This bound is realized by the packing by Hamalainen 2 in Figure 3. Together these results establish the truth of Martin Gardner s conjecture in 7 that n 11 is the first case in which non-45 packings are required. These results were first reported in 4 5 6 . We take

Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.