Đang chuẩn bị liên kết để tải về tài liệu:
Control Systems - Part 3

Không đóng trình duyệt đến khi xuất hiện nút TẢI XUỐNG

Modern Controls Các phương pháp hiện đại của các điều khiển sử dụng hệ thống phương trình trạng thái không gian đặc biệt để mô hình và thao tác các hệ thống. Mô hình biến nhà nước là đủ rộng để được hữu ích trong việc mô tả một loạt các hệ thống, bao gồm hệ thống mà không thể được mô tả đầy đủ bằng cách sử dụng Chuyển đổi Laplace. Những chương này sẽ yêu cầu người đọc để có một nền tảng vững chắc trong đại số tuyến tính, và tính toán đa biến | Control Systems Print version - Wikibooks collection of open-content textbooks Page 69 of 209 Modern Controls The modern method of controls uses systems of special state-space equations to model and manipulate systems. The state variable model is broad enough to be useful in describing a wide range of systems including systems that cannot be adequately described using the Laplace Transform. These chapters will require the reader to have a solid background in linear algebra and multi-variable calculus. http en.wikibooks.org w index.php title ControlSystems Printversion printable yes 10 30 2006 Control Systems Print version - Wikibooks collection of open-content textbooks Page 70 of 209 State-Space Equations Time-Domain Approach The Classical method of controls what we have been studying so far has been based mostly in the transform domain. When we want to control the system in general we use the Laplace transform Z-Transform for digital systems to represent the system and when we want to examine the frequency characteristics of a system we use the Fourier Transform. The question arises why do we do this Let s look at a basic second-order Laplace Transform transfer function And we can decompose this equation in terms of the system inputs and outputs Now when we take the inverse laplace transform of our equation we can see the terrible truth That s right the laplace transform is hiding the fact that we are actually dealing with second-order differential equations. The laplace transform moves us out of the time-domain messy second-order ODEs into the complex frequency domain simple second-order polynomials so that we can study and manipulate our systems more easily. So why would anybody want to work in the time domain It turns out that if we decompose our second-order or higher differential equations into multiple first-order equations we can find a new method for easily manipulating the system without having to use integral transforms. The solution to this problem is

Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.