Báo cáo tài liệu vi phạm
Giới thiệu
Kinh doanh - Marketing
Kinh tế quản lý
Biểu mẫu - Văn bản
Tài chính - Ngân hàng
Công nghệ thông tin
Tiếng anh ngoại ngữ
Kĩ thuật công nghệ
Khoa học tự nhiên
Khoa học xã hội
Văn hóa nghệ thuật
Sức khỏe - Y tế
Văn bản luật
Nông Lâm Ngư
Kỹ năng mềm
Luận văn - Báo cáo
Giải trí - Thư giãn
Tài liệu phổ thông
Văn mẫu
THỊ TRƯỜNG NGÀNH HÀNG
NÔNG NGHIỆP, THỰC PHẨM
Gạo
Rau hoa quả
Nông sản khác
Sữa và sản phẩm
Thịt và sản phẩm
Dầu thực vật
Thủy sản
Thức ăn chăn nuôi, vật tư nông nghiệp
CÔNG NGHIỆP
Dệt may
Dược phẩm, Thiết bị y tế
Máy móc, thiết bị, phụ tùng
Nhựa - Hóa chất
Phân bón
Sản phẩm gỗ, Hàng thủ công mỹ nghệ
Sắt, thép
Ô tô và linh kiện
Xăng dầu
DỊCH VỤ
Logistics
Tài chính-Ngân hàng
NGHIÊN CỨU THỊ TRƯỜNG
Hoa Kỳ
Nhật Bản
Trung Quốc
Hàn Quốc
Châu Âu
ASEAN
BẢN TIN
Bản tin Thị trường hàng ngày
Bản tin Thị trường và dự báo tháng
Bản tin Thị trường giá cả vật tư
Tìm
Danh mục
Kinh doanh - Marketing
Kinh tế quản lý
Biểu mẫu - Văn bản
Tài chính - Ngân hàng
Công nghệ thông tin
Tiếng anh ngoại ngữ
Kĩ thuật công nghệ
Khoa học tự nhiên
Khoa học xã hội
Văn hóa nghệ thuật
Y tế sức khỏe
Văn bản luật
Nông lâm ngư
Kĩ năng mềm
Luận văn - Báo cáo
Giải trí - Thư giãn
Tài liệu phổ thông
Văn mẫu
NGÀNH HÀNG
NÔNG NGHIỆP, THỰC PHẨM
Gạo
Rau hoa quả
Nông sản khác
Sữa và sản phẩm
Thịt và sản phẩm
Dầu thực vật
Thủy sản
Thức ăn chăn nuôi, vật tư nông nghiệp
CÔNG NGHIỆP
Dệt may
Dược phẩm, Thiết bị y tế
Máy móc, thiết bị, phụ tùng
Nhựa - Hóa chất
Phân bón
Sản phẩm gỗ, Hàng thủ công mỹ nghệ
Sắt, thép
Ô tô và linh kiện
Xăng dầu
DỊCH VỤ
Logistics
Tài chính-Ngân hàng
NGHIÊN CỨU THỊ TRƯỜNG
Hoa Kỳ
Nhật Bản
Trung Quốc
Hàn Quốc
Châu Âu
ASEAN
BẢN TIN
Bản tin Thị trường hàng ngày
Bản tin Thị trường và dự báo tháng
Bản tin Thị trường giá cả vật tư
Thông tin
Tài liệu Xanh là gì
Điều khoản sử dụng
Chính sách bảo mật
0
Trang chủ
Kỹ Thuật - Công Nghệ
Cơ khí - Chế tạo máy
Intro to Differential Geometry and General Relativity - S. Warner Episode 9
Đang chuẩn bị liên kết để tải về tài liệu:
Intro to Differential Geometry and General Relativity - S. Warner Episode 9
Vi Quyên
76
10
pdf
Không đóng trình duyệt đến khi xuất hiện nút TẢI XUỐNG
Tải xuống
Tham khảo tài liệu 'intro to differential geometry and general relativity - s. warner episode 9', kỹ thuật - công nghệ, cơ khí - chế tạo máy phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả | g Rabcd e Rabec d Rabde c 0 Since gj k 0 see Exercise Set 8 we can slip the gbc into the derivative getting Rad e Rae d Ra de c 0 Contracting again gives gữd -Rad e Rae d RaCde c 0 -R e Rded Rdcdec 0 -Re Rded Rcec 0. Combining terms and switching the order now gives RÌ e b - ĨR e 0 Rb ib - 0 Multiplying this by gae we now get Rab b - 2 gabR b 0 Rab is symmetric or Gabb 0 where we make the following definition Einstein Tensor G ab Rib 1 gabR Einstein s field equation for a vacuum states that Gab 0 as we shall see later. . Example 10.7 Take the 2-sphere of radius r with polar coordinates where we saw that 81 g r2sin2f 0 0 r2 The coordinates of the covariant curvature tensor are given by Rabcd 2 gbc ad gbd ac gad bc gac bd a c jbd a d jbc Let us calculate Rgýgý. Note when we use Greek letters we are referring to specific terms so there is no summation when the indices repeat So a c 0 and b d Ộ. Incidentally this is the same as RỌIIỌII by the last exercise below. The only non-vanishing second derivative of g is geew 2r2 cos2ộ - sin20X giving 1 2a 2ja 2 gộd dộ gTT ee g8ộ ộd gee ộộ r sin T cos t . The only non-vanishing first derivative of g is gee T 2r2sin T cos f giving TLTjbd j 0 since b d T eliminates the second term two of these indices need to be e in order for the term not to vanish. T-j rj r 1 2 cos T Í n 2- 2_2 radrjbc vej 4 1 sinf J -2r sin T cos T -r cos f Combining all these terms gives n _ 2 .2 2 .2 2 Reộ0ộ r sin T - cos f r cos T r2sin2f. We now calculate Ra Ree g Re.f0.f sin2f 82 and Rộộ - g Rộdộe _ sin2 3ự _ 1 - sin20 All other terms vanish since g is diagonal and R is antisymmetric. This gives R - gabRab - geeRee g R - 2 2 sin20 2 - J r sin Ộ r r .2 Summary of Some Properties of Curvature Etc. rabc Rabcd R abcd R abcd Rab - R -ab R - gabR Ra b Rab - gágbÍR I Gab - Rab 2 gabR - r a Rabdc R bacd R cdab ầbi - gijRa.ibi I ba ab ab - gaiR h ib - gaCgbdRabcd abc cba Rabcd Rabdc Note that a b and c d always go together R t - R Exercise Set 10 1. Derive the .
TÀI LIỆU LIÊN QUAN
Intro to Differential Geometry and General Relativity - S. Warner Episode 1
Intro to Differential Geometry and General Relativity - S. Warner Episode 2
Intro to Differential Geometry and General Relativity - S. Warner Episode 3
Intro to Differential Geometry and General Relativity - S. Warner Episode 4
Intro to Differential Geometry and General Relativity - S. Warner Episode 5
Intro to Differential Geometry and General Relativity - S. Warner Episode 6
Intro to Differential Geometry and General Relativity - S. Warner Episode 7
Intro to Differential Geometry and General Relativity - S. Warner Episode 8
Intro to Differential Geometry and General Relativity - S. Warner Episode 9
Intro to Differential Geometry and General Relativity - S. Warner Episode 10
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.