Báo cáo tài liệu vi phạm
Giới thiệu
Kinh doanh - Marketing
Kinh tế quản lý
Biểu mẫu - Văn bản
Tài chính - Ngân hàng
Công nghệ thông tin
Tiếng anh ngoại ngữ
Kĩ thuật công nghệ
Khoa học tự nhiên
Khoa học xã hội
Văn hóa nghệ thuật
Sức khỏe - Y tế
Văn bản luật
Nông Lâm Ngư
Kỹ năng mềm
Luận văn - Báo cáo
Giải trí - Thư giãn
Tài liệu phổ thông
Văn mẫu
THỊ TRƯỜNG NGÀNH HÀNG
NÔNG NGHIỆP, THỰC PHẨM
Gạo
Rau hoa quả
Nông sản khác
Sữa và sản phẩm
Thịt và sản phẩm
Dầu thực vật
Thủy sản
Thức ăn chăn nuôi, vật tư nông nghiệp
CÔNG NGHIỆP
Dệt may
Dược phẩm, Thiết bị y tế
Máy móc, thiết bị, phụ tùng
Nhựa - Hóa chất
Phân bón
Sản phẩm gỗ, Hàng thủ công mỹ nghệ
Sắt, thép
Ô tô và linh kiện
Xăng dầu
DỊCH VỤ
Logistics
Tài chính-Ngân hàng
NGHIÊN CỨU THỊ TRƯỜNG
Hoa Kỳ
Nhật Bản
Trung Quốc
Hàn Quốc
Châu Âu
ASEAN
BẢN TIN
Bản tin Thị trường hàng ngày
Bản tin Thị trường và dự báo tháng
Bản tin Thị trường giá cả vật tư
Tìm
Danh mục
Kinh doanh - Marketing
Kinh tế quản lý
Biểu mẫu - Văn bản
Tài chính - Ngân hàng
Công nghệ thông tin
Tiếng anh ngoại ngữ
Kĩ thuật công nghệ
Khoa học tự nhiên
Khoa học xã hội
Văn hóa nghệ thuật
Y tế sức khỏe
Văn bản luật
Nông lâm ngư
Kĩ năng mềm
Luận văn - Báo cáo
Giải trí - Thư giãn
Tài liệu phổ thông
Văn mẫu
NGÀNH HÀNG
NÔNG NGHIỆP, THỰC PHẨM
Gạo
Rau hoa quả
Nông sản khác
Sữa và sản phẩm
Thịt và sản phẩm
Dầu thực vật
Thủy sản
Thức ăn chăn nuôi, vật tư nông nghiệp
CÔNG NGHIỆP
Dệt may
Dược phẩm, Thiết bị y tế
Máy móc, thiết bị, phụ tùng
Nhựa - Hóa chất
Phân bón
Sản phẩm gỗ, Hàng thủ công mỹ nghệ
Sắt, thép
Ô tô và linh kiện
Xăng dầu
DỊCH VỤ
Logistics
Tài chính-Ngân hàng
NGHIÊN CỨU THỊ TRƯỜNG
Hoa Kỳ
Nhật Bản
Trung Quốc
Hàn Quốc
Châu Âu
ASEAN
BẢN TIN
Bản tin Thị trường hàng ngày
Bản tin Thị trường và dự báo tháng
Bản tin Thị trường giá cả vật tư
Thông tin
Tài liệu Xanh là gì
Điều khoản sử dụng
Chính sách bảo mật
0
Trang chủ
Kỹ Thuật - Công Nghệ
Tự động hoá
Speech recognition using neural networks - Chapter 2
Đang chuẩn bị liên kết để tải về tài liệu:
Speech recognition using neural networks - Chapter 2
Thiện Luân
70
18
pdf
Không đóng trình duyệt đến khi xuất hiện nút TẢI XUỐNG
Tải xuống
Review of Speech Recognition Trong chương này, chúng tôi sẽ trình bày một đánh giá ngắn gọn về lĩnh vực nhận dạng giọng nói. Sau khi xem xét một số khái niệm cơ bản, chúng tôi sẽ giải thích các thuật toán tiêu chuẩn Uốn động Thời gian, và sau đó thảo luận về Hidden Markov Mô hình chi tiết một số, cung cấp một bản tóm tắt của các thuật toán, các biến thể, và những hạn chế có liên quan đến công nghệ này chi phối. . | 2. Review of Speech Recognition In this chapter we will present a brief review of the field of speech recognition. After reviewing some fundamental concepts we will explain the standard Dynamic Time Warping algorithm and then discuss Hidden Markov Models in some detail offering a summary of the algorithms variations and limitations that are associated with this dominant technology. 2.1. Fundamentals of Speech Recognition Speech recognition is a multileveled pattern recognition task in which acoustical signals are examined and structured into a hierarchy of subword units e.g. phonemes words phrases and sentences. Each level may provide additional temporal constraints e.g. known word pronunciations or legal word sequences which can compensate for errors or uncertainties at lower levels. This hierarchy of constraints can best be exploited by combining decisions probabilistically at all lower levels and making discrete decisions only at the highest level. The structure of a standard speech recognition system is illustrated in Figure 2.1. The elements are as follows Raw speech. Speech is typically sampled at a high frequency e.g. 16 KHz over a microphone or 8 KHz over a telephone. This yields a sequence of amplitude values over time. Signal analysis. Raw speech should be initially transformed and compressed in order to simplify subsequent processing. Many signal analysis techniques are available which can extract useful features and compress the data by a factor of ten without losing any important information. Among the most popular Fourier analysis FFT yields discrete frequencies over time which can be interpreted visually. Frequencies are often distributed using a Mel scale which is linear in the low range but logarithmic in the high range corresponding to physiological characteristics of the human ear. Perceptual Linear Prediction PLP is also physiologically motivated but yields coefficients that cannot be interpreted visually. 9 10 2. Review of Speech Recognition .
TÀI LIỆU LIÊN QUAN
Neural network based tonal feature for Vietnamese speech recognition using multi space distribution model
Improving bottleneck features for Vietnamese large vocabulary continuous speech recognition system using deep neural networks
Speech Recognition using Neural Networks
Speech recognition using neural networks - Chapter 1
Speech recognition using neural networks - Chapter 2
Speech recognition using neural networks - Chapter 3
Speech recognition using neural networks - Chapter 4
Speech recognition using neural networks - Chapter 5
Speech recognition using neural networks - Chapter 6
Speech recognition using neural networks - Chapter 7
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.