Báo cáo tài liệu vi phạm
Giới thiệu
Kinh doanh - Marketing
Kinh tế quản lý
Biểu mẫu - Văn bản
Tài chính - Ngân hàng
Công nghệ thông tin
Tiếng anh ngoại ngữ
Kĩ thuật công nghệ
Khoa học tự nhiên
Khoa học xã hội
Văn hóa nghệ thuật
Sức khỏe - Y tế
Văn bản luật
Nông Lâm Ngư
Kỹ năng mềm
Luận văn - Báo cáo
Giải trí - Thư giãn
Tài liệu phổ thông
Văn mẫu
THỊ TRƯỜNG NGÀNH HÀNG
NÔNG NGHIỆP, THỰC PHẨM
Gạo
Rau hoa quả
Nông sản khác
Sữa và sản phẩm
Thịt và sản phẩm
Dầu thực vật
Thủy sản
Thức ăn chăn nuôi, vật tư nông nghiệp
CÔNG NGHIỆP
Dệt may
Dược phẩm, Thiết bị y tế
Máy móc, thiết bị, phụ tùng
Nhựa - Hóa chất
Phân bón
Sản phẩm gỗ, Hàng thủ công mỹ nghệ
Sắt, thép
Ô tô và linh kiện
Xăng dầu
DỊCH VỤ
Logistics
Tài chính-Ngân hàng
NGHIÊN CỨU THỊ TRƯỜNG
Hoa Kỳ
Nhật Bản
Trung Quốc
Hàn Quốc
Châu Âu
ASEAN
BẢN TIN
Bản tin Thị trường hàng ngày
Bản tin Thị trường và dự báo tháng
Bản tin Thị trường giá cả vật tư
Tìm
Danh mục
Kinh doanh - Marketing
Kinh tế quản lý
Biểu mẫu - Văn bản
Tài chính - Ngân hàng
Công nghệ thông tin
Tiếng anh ngoại ngữ
Kĩ thuật công nghệ
Khoa học tự nhiên
Khoa học xã hội
Văn hóa nghệ thuật
Y tế sức khỏe
Văn bản luật
Nông lâm ngư
Kĩ năng mềm
Luận văn - Báo cáo
Giải trí - Thư giãn
Tài liệu phổ thông
Văn mẫu
NGÀNH HÀNG
NÔNG NGHIỆP, THỰC PHẨM
Gạo
Rau hoa quả
Nông sản khác
Sữa và sản phẩm
Thịt và sản phẩm
Dầu thực vật
Thủy sản
Thức ăn chăn nuôi, vật tư nông nghiệp
CÔNG NGHIỆP
Dệt may
Dược phẩm, Thiết bị y tế
Máy móc, thiết bị, phụ tùng
Nhựa - Hóa chất
Phân bón
Sản phẩm gỗ, Hàng thủ công mỹ nghệ
Sắt, thép
Ô tô và linh kiện
Xăng dầu
DỊCH VỤ
Logistics
Tài chính-Ngân hàng
NGHIÊN CỨU THỊ TRƯỜNG
Hoa Kỳ
Nhật Bản
Trung Quốc
Hàn Quốc
Châu Âu
ASEAN
BẢN TIN
Bản tin Thị trường hàng ngày
Bản tin Thị trường và dự báo tháng
Bản tin Thị trường giá cả vật tư
Thông tin
Tài liệu Xanh là gì
Điều khoản sử dụng
Chính sách bảo mật
0
Trang chủ
Khoa Học Tự Nhiên
Toán học
Giáo trình lý thuyết đồ thị - Bài 2
Đang chuẩn bị liên kết để tải về tài liệu:
Giáo trình lý thuyết đồ thị - Bài 2
Hoàng Khôi
101
1
pdf
Không đóng trình duyệt đến khi xuất hiện nút TẢI XUỐNG
Tải xuống
Tham khảo tài liệu 'giáo trình lý thuyết đồ thị - bài 2', khoa học tự nhiên, toán học phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả | BÀI 02 1.2. Một số tính chất về Đường đi trên đồ thị Trong phần này chúng ta xét một số tính chất của đường đi nối hai đỉnh trong một đồ thị cũng như sự tồn tại của chúng. Định lý 1.2 Giả sử đồ thị Gcó n đỉnh. Tồn tại đường đi từ đỉnh a đến đỉnh b trên đồ thị G khi và chỉ khi tồn tại một đường đi từ a đến b trên đồ thị này với độ dài không vượt quá n-1. Chứng minh Giả sử có đường đi từ đỉnh a tới đỉnh b. Ta có thể chọn a Xj x2 . xk b là đường đi có độ dài ngắn nhất. Hình 1.6. Một đường đi từ đỉnh a đến đỉnh b Độ dài của đường đi là k-1. Nếu k-1 n-1 thì định lý được chứng minh. Nếu ngược lại k-1 n-1 nghĩa là k n thì trong dãy đỉnh của đường đi sẽ có ít nhất hai đỉnh trùng nhau chẳng hạn xi xj . Khi đó thì a xj x2 . xi xj i . xk b cũng là đường đi từ a tới b nhưng với độ dài ngắn hơn. Suy ra mâu thuân với giả thiết của đường đi ngắn nhất. Định lý được chứng minh xong. Chúng ta xét bài toán đường đi trên đồ thị như sau. Bài toán Cho đồ thị G và hai đỉnh a b thuộc G. Có hay không một đường đi từ đỉnh a đến đỉnh b trên đồ thị G Dựa vào Định lý 1.1 và 1.2 ta xây dựng thuật toán sau đây để trả lời cho bài toán trên. Thuật toán 1.3 1 Xây dựng ma trận kề A cho đồ thị G. 2 Tính ma trận tổng các luỹ thừa T A1 A2 . An-1 3 Nếu T a b 1 thì kết luận là có đường đi từ đỉnh a đến đỉnh b ngược lại thì kết luận là không có. Chú ý 1. Ma trận tổng T còn được gọi là bao đóng bắc cầu của ma trận kề A. 2. Các phần tử của ma trận T có thể rất lớn hơn nữa chúng ta chỉ quan tâm đến tính chất khác 0 của các phần tử nên có thể xem ma trận kề A như ma trận logic và trong phép nhân ma trận ta thay các phép toán số học bằng các phép toán logic OR và AND. Khi đó ta dùng thuật toán Warshall sau đây để tính ma trận bao đóng bắc cầu logic AS. Các phần tử logic của ma trận AS cho biết có hay không đường đi giữa tất cả các cặp đỉnh của đồ thị đã cho. Thuật toán 1.4 Warshall Dữ liệu Ma trận kề logic A của đồ thị G. Kết quả Ma trận bao đóng bắc cầu logic AS. 1 Begin 2 for i 1 to n do 3 for j 1 to n do AS
TÀI LIỆU LIÊN QUAN
Giáo trình Lý thuyết đồ thị: Phần 2 - PGS. Nguyễn Cam, PTS. Chu Đức Khánh
Đề thi LÝ THUYẾT ĐỒ HỌA K27 (lần 2)
Quản lý môi trường đô thị và khu công nghiệp
Kiến trúc sư làm gì để biến đổi đô thị?
Bài tập về lý thuyết đồ thị
Lập trình Android cơ bản: Bài 2 Xây dựng giao diện đơn giản
Bài giảng đồ họa : Hiển thị đối tượng hai chiều
Lập trình Android cơ bản: Bài 4 Intent và Broadcast Receiver
Lập trình Android cơ bản: Bài 1 Cơ bản Android
Lập trình Android cơ bản: Bài 6 Android SQLite Database
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.