Báo cáo tài liệu vi phạm
Giới thiệu
Kinh doanh - Marketing
Kinh tế quản lý
Biểu mẫu - Văn bản
Tài chính - Ngân hàng
Công nghệ thông tin
Tiếng anh ngoại ngữ
Kĩ thuật công nghệ
Khoa học tự nhiên
Khoa học xã hội
Văn hóa nghệ thuật
Sức khỏe - Y tế
Văn bản luật
Nông Lâm Ngư
Kỹ năng mềm
Luận văn - Báo cáo
Giải trí - Thư giãn
Tài liệu phổ thông
Văn mẫu
THỊ TRƯỜNG NGÀNH HÀNG
NÔNG NGHIỆP, THỰC PHẨM
Gạo
Rau hoa quả
Nông sản khác
Sữa và sản phẩm
Thịt và sản phẩm
Dầu thực vật
Thủy sản
Thức ăn chăn nuôi, vật tư nông nghiệp
CÔNG NGHIỆP
Dệt may
Dược phẩm, Thiết bị y tế
Máy móc, thiết bị, phụ tùng
Nhựa - Hóa chất
Phân bón
Sản phẩm gỗ, Hàng thủ công mỹ nghệ
Sắt, thép
Ô tô và linh kiện
Xăng dầu
DỊCH VỤ
Logistics
Tài chính-Ngân hàng
NGHIÊN CỨU THỊ TRƯỜNG
Hoa Kỳ
Nhật Bản
Trung Quốc
Hàn Quốc
Châu Âu
ASEAN
BẢN TIN
Bản tin Thị trường hàng ngày
Bản tin Thị trường và dự báo tháng
Bản tin Thị trường giá cả vật tư
Tìm
Danh mục
Kinh doanh - Marketing
Kinh tế quản lý
Biểu mẫu - Văn bản
Tài chính - Ngân hàng
Công nghệ thông tin
Tiếng anh ngoại ngữ
Kĩ thuật công nghệ
Khoa học tự nhiên
Khoa học xã hội
Văn hóa nghệ thuật
Y tế sức khỏe
Văn bản luật
Nông lâm ngư
Kĩ năng mềm
Luận văn - Báo cáo
Giải trí - Thư giãn
Tài liệu phổ thông
Văn mẫu
NGÀNH HÀNG
NÔNG NGHIỆP, THỰC PHẨM
Gạo
Rau hoa quả
Nông sản khác
Sữa và sản phẩm
Thịt và sản phẩm
Dầu thực vật
Thủy sản
Thức ăn chăn nuôi, vật tư nông nghiệp
CÔNG NGHIỆP
Dệt may
Dược phẩm, Thiết bị y tế
Máy móc, thiết bị, phụ tùng
Nhựa - Hóa chất
Phân bón
Sản phẩm gỗ, Hàng thủ công mỹ nghệ
Sắt, thép
Ô tô và linh kiện
Xăng dầu
DỊCH VỤ
Logistics
Tài chính-Ngân hàng
NGHIÊN CỨU THỊ TRƯỜNG
Hoa Kỳ
Nhật Bản
Trung Quốc
Hàn Quốc
Châu Âu
ASEAN
BẢN TIN
Bản tin Thị trường hàng ngày
Bản tin Thị trường và dự báo tháng
Bản tin Thị trường giá cả vật tư
Thông tin
Tài liệu Xanh là gì
Điều khoản sử dụng
Chính sách bảo mật
0
Trang chủ
Khoa Học Tự Nhiên
Toán học
Nguyên lí quy nạp
Đang chuẩn bị liên kết để tải về tài liệu:
Nguyên lí quy nạp
Công Phụng
175
4
ppt
Không đóng trình duyệt đến khi xuất hiện nút TẢI XUỐNG
Tải xuống
Để chứng minh p(n) đúng với mọi n N và n n0. Ta có thể dùng nguyên lý quy nạp như sau: Kiểm chứng p(n0) đúng Nếu p(n) đúng (n n0 ) thì p(n+1) đúng Kết luận: p(n) đúng n n0 | Nguyên Lý Quy Nạp Phan Văn Đăng Khoa Trần Anh Quân Lý thuyết Để chứng minh p(n) đúng với mọi n N và n n0. Ta có thể dùng nguyên lý quy nạp như sau: Kiểm chứng p(n0) đúng Nếu p(n) đúng (n n0 ) thì p(n+1) đúng Kết luận: p(n) đúng n n0 Nghĩa là sử dụng suy diễn sau: p(n0) n > n0, p(n) p(n+1) n n0, p(n) Ví dụ 1: Ví dụ 5.1: Chứng minh rằng: 1.1! + 2.2!+ +n.n!=(n+1)!-1 Giải: Đặt: p(n)=“1.1! + 2.2! + + n.n! = (n+1)! - 1” Ta có: p(1)=“1.1! = (1+1)! – 1” đúng Giả sử p(n) với n 1 đúng, ta chứng minh p(n+1) cũng đúng. Do p(n) đúng nên: 1.1! + 2.2! + + n.n! = (n+1)! – 1 1.1! + 2.2! + + n.n!+(n+1).(n+1)! = (n+1)! – 1+(n+1).(n+1)! 1.1! + 2.2! + + n.n!+(n+1).(n+1)! = (n+1)!(1+n+1) –1 1.1! + 2.2! + + n.n!+(n+1).(n+1)! = (n+2)! –1 Vậy p(n+1) cũng đúng. Theo nguyên lý quy nạp, ta có: n 1, p(n) đúng. Ví dụ . | Nguyên Lý Quy Nạp Phan Văn Đăng Khoa Trần Anh Quân Lý thuyết Để chứng minh p(n) đúng với mọi n N và n n0. Ta có thể dùng nguyên lý quy nạp như sau: Kiểm chứng p(n0) đúng Nếu p(n) đúng (n n0 ) thì p(n+1) đúng Kết luận: p(n) đúng n n0 Nghĩa là sử dụng suy diễn sau: p(n0) n > n0, p(n) p(n+1) n n0, p(n) Ví dụ 1: Ví dụ 5.1: Chứng minh rằng: 1.1! + 2.2!+ +n.n!=(n+1)!-1 Giải: Đặt: p(n)=“1.1! + 2.2! + + n.n! = (n+1)! - 1” Ta có: p(1)=“1.1! = (1+1)! – 1” đúng Giả sử p(n) với n 1 đúng, ta chứng minh p(n+1) cũng đúng. Do p(n) đúng nên: 1.1! + 2.2! + + n.n! = (n+1)! – 1 1.1! + 2.2! + + n.n!+(n+1).(n+1)! = (n+1)! – 1+(n+1).(n+1)! 1.1! + 2.2! + + n.n!+(n+1).(n+1)! = (n+1)!(1+n+1) –1 1.1! + 2.2! + + n.n!+(n+1).(n+1)! = (n+2)! –1 Vậy p(n+1) cũng đúng. Theo nguyên lý quy nạp, ta có: n 1, p(n) đúng. Ví dụ 2: | Nguyên Lý Quy Nạp Phan Văn Đăng Khoa Trần Anh Quân Lý thuyết Để chứng minh p(n) đúng với mọi n N và n n0. Ta có thể dùng nguyên lý quy nạp như sau: Kiểm chứng p(n0) đúng Nếu p(n) đúng (n n0 ) thì p(n+1) đúng Kết luận: p(n) đúng n n0 Nghĩa là sử dụng suy diễn sau: p(n0) n > n0, p(n) p(n+1) n n0, p(n) Ví dụ 1: Ví dụ 5.1: Chứng minh rằng: 1.1! + 2.2!+ +n.n!=(n+1)!-1 Giải: Đặt: p(n)=“1.1! + 2.2! + + n.n! = (n+1)! - 1” Ta có: p(1)=“1.1! = (1+1)! – 1” đúng Giả sử p(n) với n 1 đúng, ta chứng minh p(n+1) cũng đúng. Do p(n) đúng nên: 1.1! + 2.2! + + n.n! = (n+1)! – 1 1.1! + 2.2! + + n.n!+(n+1).(n+1)! = (n+1)! – 1+(n+1).(n+1)! 1.1! + 2.2! + + n.n!+(n+1).(n+1)! = (n+1)!(1+n+1) –1 1.1! + 2.2! + + n.n!+(n+1).(n+1)! = (n+2)! –1 Vậy p(n+1) cũng đúng. Theo nguyên lý quy nạp, ta có: n 1, p(n) đúng. Ví dụ 2: | Nguyên Lý Quy Nạp Phan Văn Đăng Khoa Trần Anh Quân Lý thuyết Để chứng minh p(n) đúng với mọi n N và n n0. Ta có thể dùng nguyên lý quy nạp như sau: Kiểm chứng p(n0) đúng Nếu p(n) đúng (n n0 ) thì p(n+1) đúng Kết luận: p(n) đúng n n0 Nghĩa là sử dụng suy diễn sau: p(n0) n > n0, p(n) p(n+1) n n0, p(n) Ví dụ 1: Ví dụ 5.1: Chứng minh rằng: 1.1! + 2.2!+ +n.n!=(n+1)!-1 Giải: Đặt: p(n)=“1.1! + 2.2! + + n.n! = (n+1)! - 1” Ta có: p(1)=“1.1! = (1+1)! – 1” đúng Giả sử p(n) với n 1 đúng, ta chứng minh p(n+1) cũng đúng. Do p(n) đúng nên: 1.1! + 2.2! + + n.n! = (n+1)! – 1 1.1! + 2.2! + + n.n!+(n+1).(n+1)! = (n+1)! – 1+(n+1).(n+1)! 1.1! + 2.2! + + n.n!+(n+1).(n+1)! = (n+1)!(1+n+1) –1 1.1! + 2.2! + + n.n!+(n+1).(n+1)! = (n+2)! –1 Vậy p(n+1) cũng đúng. Theo nguyên lý quy nạp, ta có: n 1, p(n) đúng. Ví dụ .
TÀI LIỆU LIÊN QUAN
Bài giảng Tiết 43: Nguồn gốc và chiều hướng tiến hoá chung của sinh giới - GV. Nghiêm Thị Ngọc Bích
Bài giảng Lí thuyết ngôn ngữ hình thức và ôtômát: Chương 2 - Nguyễn Thị Minh Huyền
Tiểu luận Quản lí tài chính trong trường học: Tìm hiểu và xây dựng quy định quản lý tài chính đối với hoạt động công nghệ thông tin trong trường học. Lựa chọn 1 hoạt động ở trường học, xây dựng kế hoạch và dự trù kinh phí đối với hoạt động này
Nguyên lí quy nạp
NGUYÊN LÍ QUY HOẠCH ĐÔ THỊ
Đổi mới phương pháp dạy học môn “Những nguyên lí cơ bản của chủ nghĩa Mác Lênin” cho sinh viên đại học chính quy trường Đại học Điều dưỡng Nam Định
LÂM NGHIỆP CỘNG ĐỒNG
Đề thi khảo sát môn Vật lí lớp 10 năm 2018-2019 lần 3 - THPT Nguyễn Viết Xuân - Mã đề 101
Đề thi học kì 2 môn Vật lí lớp 7 năm 2020-2021 có đáp án - Trường THCS Nguyễn Hiền
Hội thoại trong Truyện Kiều của Nguyễn Du
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.