Đang chuẩn bị liên kết để tải về tài liệu:
ĐỀ THI CHỌN ĐỘI TUYỂN OLYMPIC TOÁN SINH VIÊN 2012 CỦA ĐẠI HỌC KHOA HỌC TỰ NHIÊN HÀ NỘI

Không đóng trình duyệt đến khi xuất hiện nút TẢI XUỐNG

Bài 1. Cho P(x) là đa thức bậc n thỏa mãn điều kiện ∫10xkP(x)dx=0,k=1,2, ,n. Chứng minh rằng ∫10(P(x))2dx=(n+1)2(∫10P(x)dx)2 Bài 2. Cho hàm số f khả vi liên tục trên đoạn [0,1] sao cho f(0)=0,f(1)=1 và ∣∣f′(x)∣∣≤2 với mọi x∈[0,1]. Chứng minh rằng ∫10f(x)dx18 Bài 3. Cho dãy số thực {an} thỏa mãn điều kiện limn→∞(2an+1−an)=2012 Chứng minh rằng dãy số {an} hội tụ.

Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.