Đang chuẩn bị liên kết để tải về tài liệu:
Báo cáo khoa học: "Learning with Annotation Noise"

Không đóng trình duyệt đến khi xuất hiện nút TẢI XUỐNG

It is usually assumed that the kind of noise existing in annotated data is random classification noise. Yet there is evidence that differences between annotators are not always random attention slips but could result from different biases towards the classification categories, at least for the harder-to-decide cases. Under an annotation generation model that takes this into account, there is a hazard that some of the training instances are actually hard cases with unreliable annotations.

TÀI LIỆU LIÊN QUAN
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.