Báo cáo tài liệu vi phạm
Giới thiệu
Kinh doanh - Marketing
Kinh tế quản lý
Biểu mẫu - Văn bản
Tài chính - Ngân hàng
Công nghệ thông tin
Tiếng anh ngoại ngữ
Kĩ thuật công nghệ
Khoa học tự nhiên
Khoa học xã hội
Văn hóa nghệ thuật
Sức khỏe - Y tế
Văn bản luật
Nông Lâm Ngư
Kỹ năng mềm
Luận văn - Báo cáo
Giải trí - Thư giãn
Tài liệu phổ thông
Văn mẫu
THỊ TRƯỜNG NGÀNH HÀNG
NÔNG NGHIỆP, THỰC PHẨM
Gạo
Rau hoa quả
Nông sản khác
Sữa và sản phẩm
Thịt và sản phẩm
Dầu thực vật
Thủy sản
Thức ăn chăn nuôi, vật tư nông nghiệp
CÔNG NGHIỆP
Dệt may
Dược phẩm, Thiết bị y tế
Máy móc, thiết bị, phụ tùng
Nhựa - Hóa chất
Phân bón
Sản phẩm gỗ, Hàng thủ công mỹ nghệ
Sắt, thép
Ô tô và linh kiện
Xăng dầu
DỊCH VỤ
Logistics
Tài chính-Ngân hàng
NGHIÊN CỨU THỊ TRƯỜNG
Hoa Kỳ
Nhật Bản
Trung Quốc
Hàn Quốc
Châu Âu
ASEAN
BẢN TIN
Bản tin Thị trường hàng ngày
Bản tin Thị trường và dự báo tháng
Bản tin Thị trường giá cả vật tư
Tìm
Danh mục
Kinh doanh - Marketing
Kinh tế quản lý
Biểu mẫu - Văn bản
Tài chính - Ngân hàng
Công nghệ thông tin
Tiếng anh ngoại ngữ
Kĩ thuật công nghệ
Khoa học tự nhiên
Khoa học xã hội
Văn hóa nghệ thuật
Y tế sức khỏe
Văn bản luật
Nông lâm ngư
Kĩ năng mềm
Luận văn - Báo cáo
Giải trí - Thư giãn
Tài liệu phổ thông
Văn mẫu
NGÀNH HÀNG
NÔNG NGHIỆP, THỰC PHẨM
Gạo
Rau hoa quả
Nông sản khác
Sữa và sản phẩm
Thịt và sản phẩm
Dầu thực vật
Thủy sản
Thức ăn chăn nuôi, vật tư nông nghiệp
CÔNG NGHIỆP
Dệt may
Dược phẩm, Thiết bị y tế
Máy móc, thiết bị, phụ tùng
Nhựa - Hóa chất
Phân bón
Sản phẩm gỗ, Hàng thủ công mỹ nghệ
Sắt, thép
Ô tô và linh kiện
Xăng dầu
DỊCH VỤ
Logistics
Tài chính-Ngân hàng
NGHIÊN CỨU THỊ TRƯỜNG
Hoa Kỳ
Nhật Bản
Trung Quốc
Hàn Quốc
Châu Âu
ASEAN
BẢN TIN
Bản tin Thị trường hàng ngày
Bản tin Thị trường và dự báo tháng
Bản tin Thị trường giá cả vật tư
Thông tin
Tài liệu Xanh là gì
Điều khoản sử dụng
Chính sách bảo mật
0
Trang chủ
Tài Liệu Phổ Thông
Trung học phổ thông
Giáo trình hình học: Giải tích không gian
Đang chuẩn bị liên kết để tải về tài liệu:
Giáo trình hình học: Giải tích không gian
Nhã Trang
185
21
pdf
Không đóng trình duyệt đến khi xuất hiện nút TẢI XUỐNG
Tải xuống
Bài viết Hình học giải tích trong không gian dùng để luyện thi đại học môn toán cho các bạn học sinh cuối cấp. Các bạn học sinh cấp 3 đã được làm quen với Hình học giải tích nên sẽ không khó để đọc tài liệu này. tài liệu về hình học rất cơ bản.Trong không gian, mỗi điểm M tương ứng với duy nhất bộ ba số ( x, y, z) và bộ ba số đó được gọi là tọa độ của điểm M, kí hiệu là M (x, y, z ) hoặc M =(x, y, z). | Phần 1 _ HÌNH HỌC GIẢI TÍCH KHỔNG GIAN Chương 1 PHÉP TÍNH TOẠ ĐỘ TRONG KHÔNG GIAN 1. TÓM TẮT LÍ THUYẾT Toa độ điểm trong không gian Trong không gian mỗi điểm M tương ứng với duy nhất bộ ba số x y z và bộ ba số đó được gọi là toạ độ của điểm M kí hiệu là M x y z hoặc M x y z . Cho hai điểm MịCxỊ y Zj và M2 x2 y2 z2 . Kí hiệu I là trung điểm của MN thì toạ độ x y z của I được xác định bởi công thức X x2 X ---. z 2 Y1 Y2 y 2 z Ỉ2. 2 Công thức này thường được gọi tên là Hệ thức Sác lơ. Cho tam giác ABC với A xl yj Zj B x2 y2 z2 c x3 y3 z3 . Khi đó trọng tâm G của tam giác có toạ.độ được xác định như sau G X1 x2 x3 . Y Y2 Y3 . Z1 z2 z3 3 3 3 4 Cho tứ diện ABCD. Điểm G gọi là trọng tâm của tứ diện khi và chỉ khi GA 4- GB 4- GC 4- GD õ. Nếu A Xj y zị B x2 y2 z2 c x3 y3 z3 D x4 y4 z4 thì trọng tâm G của tứ diện có toạ độ được xác định như sau n _ f X1 x2 x3 x4 . Y1 Y2 y.3 Y4 . Z1 z2 z3 z4 ì l 4 4 4 J Vectơ trong không gian Trong không gian cho vectơ MN với M Xị yi Zị N x2 y2 z2 thì MN x2 - X y2 - yj z2 - z1 Ta hay kí hiệu vectơ bởi các chữ cái ũ V w . Các phép tính về vectơ trong không gian cũng tương tự như các phép tính về vectơ trong mặt phẳng toạ độ. Giả sử ũ uị u2 u3 V Vị v2 v3 . Khi đó ta có u V U1 u2 V1 .v2 u3 v3 íi 4- V U 4- Vị u2 4- v2 u3 4- v3 u - V uị - Vị u2 - v2 u3 - v3 Xu Xu Ị Xu2 Xu3 ở đây X 6 R. Độ dài ũ của vectơ ũ Uj u2 u3 được xác định như sau u ựu 4- u2 4- u3 . Cho hai vectơ u V . Tích vô hướng của hai vectơ u V là một số thực kí hiệu là ủ.v và nó được xác định như sau ũ. V ĩỉ . v cos u v . 5 Biểu thức giải tích của tích vô hướng Giả sử u u u2 u3 V Vị v2 v3 . Khi đó u. V UịV U2V2 U3V3. cos ĩỉ v UịVị U2V2 U3V3 u2 u3 .ựvf v2 v3 ũ V u.v 0 UịVj U2V2 U3V3 0. Tích có hướng của hai vectơ Cho hai vectơ ĩi Uị u2 u3 V vb v2 v3 . Tích có hướng của u V là một vectơ kí hiệu là u v và nó được xác định bằng công thức sau đây u v r u2 u3 v2 v3 u3 U1 v3 Vj U1 V1 u2 v2 Tích có hướng của hai vectơ u và V có các tính chất cơ bản sau 1 ũ v ũ . v .sin ũ V .
TÀI LIỆU LIÊN QUAN
Giáo trình hình học: Giải tích không gian
BÀI TẬP VỀ NHÀ (Hình học giải tích không gian)
Tuyển chọn các bài toán hình học giải tích trong không gian
Giáo trình Hình học giải tích: Phần 2
Hướng dẫn sử dụng và giải toán trên máy tính FX 570MS
GIÁO TRÌNH: HÌNH HỌC CĂN BẢN
GIẢI GẦN ĐÚNG PHƯƠNG TRÌNH VI PHÂN
Giáo trình Đại số và hình học giải tích 1, 2 - Tạ Lê Lợi
Bài tập học phần toán rời rạc 2
BÀI TOÁN THIẾT LẬP PHƯƠNG TRÌNH ĐƯỜNG THẲNG VÀ ĐƯỜNG TRONG TRONG MẶT PHẲNG
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.