Đang chuẩn bị liên kết để tải về tài liệu:
New inequalities for fractional integrals and their applications

Không đóng trình duyệt đến khi xuất hiện nút TẢI XUỐNG

In this paper, we establish some Hermite–Hadamard-type, Bullen-type, and Simpson-type inequalities for fractional integrals. Some applications for the beta function are also given. | Turk J Math (2016) 40: 471 – 486 ¨ ITAK ˙ c TUB ⃝ Turkish Journal of Mathematics http://journals.tubitak.gov.tr/math/ doi:10.3906/mat-1411-61 Research Article New inequalities for fractional integrals and their applications Shiow-Ru HWANG1 , Kuei-Lin TSENG2,∗, Kai-Chen HSU2 China University of Science and Technology, Nankang, Taipei, Taiwan 2 Department of Applied Mathematics, Aletheia University, Tamsui, New Taipei City, Taiwan 1 Received: 25.11.2014 • Accepted/Published Online: 24.06.2015 • Final Version: 08.04.2016 Abstract: In this paper, we establish some Hermite–Hadamard-type, Bullen-type, and Simpson-type inequalities for fractional integrals. Some applications for the beta function are also given. Key words: Hermite–Hadamard inequality, Bullen inequality, Simpson inequality, fractional integral, convex function 1. Introduction Throughout this paper, let a 0 with a ≥ 0 are defined by Jaα+ f 1 (x) = Γ (α) and Jbα− f (x) = 1 Γ (α) ∫ x α−1 (x − t) f (t) dt (x > a) f (t) dt (x 0. Theorem E Under the assumptions of Theorem B, then we have f (a) + f (b) Γ (α + 1) α α − α [Ja+ f (b) + Jb− f (a)] 2 2 (b − a) ≤ for α > 0. 472 2α − 1 (b − a) (|f ′ (a)| + |f ′ (b)|) 2α+1 (α + 1) (1.6) HWANG et al./Turk J Math Zhu et al. [16] established the following fractional integral inequality with the first inequality of (1.5): Theorem F Under the assumptions of Theorem B, then we have ) ( Γ (α + 1) α a + b α 2 (b − a)α [Ja+ f (b) + Jb− f (a)] − f 2 ( ) (b − a) 1 ≤ α + 3 − α−1 (|f ′ (a)| + |f ′ (b)|) 4 (α + 1) 2 (1.7) for α > 0. Remark 1.2 1. The assumption f : [a, b] → R is positive with 0 ≤ a 0. Proof Define { h1 (x) = [ ) α α α (b − x) − (x − a) − (b − a) , x ∈ [a, a+b 2 ] . α α α (b − x) − (x − a) + (b − a) , x ∈ a+b 2 ,b 473 HWANG et al./Turk J Math Using integration by parts, we have the following identities: 1 α 2 (b − a) = α α 2 (b − a) = αΓ (α) α 2 (b − a) = Γ (α + 1) α 2 (b − a) ∫ b h1 (x) f ′ (x)

Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.