Báo cáo tài liệu vi phạm
Giới thiệu
Kinh doanh - Marketing
Kinh tế quản lý
Biểu mẫu - Văn bản
Tài chính - Ngân hàng
Công nghệ thông tin
Tiếng anh ngoại ngữ
Kĩ thuật công nghệ
Khoa học tự nhiên
Khoa học xã hội
Văn hóa nghệ thuật
Sức khỏe - Y tế
Văn bản luật
Nông Lâm Ngư
Kỹ năng mềm
Luận văn - Báo cáo
Giải trí - Thư giãn
Tài liệu phổ thông
Văn mẫu
THỊ TRƯỜNG NGÀNH HÀNG
NÔNG NGHIỆP, THỰC PHẨM
Gạo
Rau hoa quả
Nông sản khác
Sữa và sản phẩm
Thịt và sản phẩm
Dầu thực vật
Thủy sản
Thức ăn chăn nuôi, vật tư nông nghiệp
CÔNG NGHIỆP
Dệt may
Dược phẩm, Thiết bị y tế
Máy móc, thiết bị, phụ tùng
Nhựa - Hóa chất
Phân bón
Sản phẩm gỗ, Hàng thủ công mỹ nghệ
Sắt, thép
Ô tô và linh kiện
Xăng dầu
DỊCH VỤ
Logistics
Tài chính-Ngân hàng
NGHIÊN CỨU THỊ TRƯỜNG
Hoa Kỳ
Nhật Bản
Trung Quốc
Hàn Quốc
Châu Âu
ASEAN
BẢN TIN
Bản tin Thị trường hàng ngày
Bản tin Thị trường và dự báo tháng
Bản tin Thị trường giá cả vật tư
Tìm
Danh mục
Kinh doanh - Marketing
Kinh tế quản lý
Biểu mẫu - Văn bản
Tài chính - Ngân hàng
Công nghệ thông tin
Tiếng anh ngoại ngữ
Kĩ thuật công nghệ
Khoa học tự nhiên
Khoa học xã hội
Văn hóa nghệ thuật
Y tế sức khỏe
Văn bản luật
Nông lâm ngư
Kĩ năng mềm
Luận văn - Báo cáo
Giải trí - Thư giãn
Tài liệu phổ thông
Văn mẫu
NGÀNH HÀNG
NÔNG NGHIỆP, THỰC PHẨM
Gạo
Rau hoa quả
Nông sản khác
Sữa và sản phẩm
Thịt và sản phẩm
Dầu thực vật
Thủy sản
Thức ăn chăn nuôi, vật tư nông nghiệp
CÔNG NGHIỆP
Dệt may
Dược phẩm, Thiết bị y tế
Máy móc, thiết bị, phụ tùng
Nhựa - Hóa chất
Phân bón
Sản phẩm gỗ, Hàng thủ công mỹ nghệ
Sắt, thép
Ô tô và linh kiện
Xăng dầu
DỊCH VỤ
Logistics
Tài chính-Ngân hàng
NGHIÊN CỨU THỊ TRƯỜNG
Hoa Kỳ
Nhật Bản
Trung Quốc
Hàn Quốc
Châu Âu
ASEAN
BẢN TIN
Bản tin Thị trường hàng ngày
Bản tin Thị trường và dự báo tháng
Bản tin Thị trường giá cả vật tư
Thông tin
Tài liệu Xanh là gì
Điều khoản sử dụng
Chính sách bảo mật
0
Trang chủ
Tài Liệu Phổ Thông
Đề thi - Kiểm tra
Đề thi chọn học sinh giỏi Toán lớp 9 năm 2012-2013 (Đề đề nghị) – Trường THCS Mỹ Hòa
Đang chuẩn bị liên kết để tải về tài liệu:
Đề thi chọn học sinh giỏi Toán lớp 9 năm 2012-2013 (Đề đề nghị) – Trường THCS Mỹ Hòa
Thanh Hậu
220
2
pdf
Không đóng trình duyệt đến khi xuất hiện nút TẢI XUỐNG
Tải xuống
Đề thi chọn học sinh giỏi Toán lớp 9 năm 2012-2013 (Đề đề nghị) – Trường THCS Mỹ Hòa cung cấp cho giáo viên và học sinh các bài tập Toán nâng cao lớp 9, là tài liệu tham khảo trong quá trình phân loại, đánh giá năng lực của học sinh. Để nắm chi tiết nội dung các bài tập đề thi. | Đề thi chọn học sinh giỏi Toán lớp 9 năm 2012-2013 (Đề đề nghị) – Trường THCS Mỹ Hòa PHÒNG GIÁO DỤC & ĐÀO TẠO ĐẠI LỘC TRƯỜNG THCS MỸ HOÀ CẤU TRÚC ĐỀ THI HỌC SINH GIỎI TOÁN 9 Năm học: 2012- 2013 Câu Phân Thành Nội dung Điểm môn phần của từng câu câu 1 Số học 1 - Toán số chính phương 2 (C.2) 2 Đại số 2 Thực hiện phép biến đổi về căn bậc hai. 5 (C.1.1;2) Rút gọn biểu thức đại số . Tìm giá trị nguyên, điều kiện để có giá trị nguyên. Phân tích thành nhân tử 3 Đại số 2 - Giải phương trình vô tỉ một hoặc hai căn thức 5 (C.3.1;2) - Chứng minh bất đẳng thức. Toán áp dụng bất đẳng thức Cô – si cho 2 số -Tìm GTLN, GTNN của một biểu thức . 4 Hình 2 Các bài toán có liên quan đến tam giác , tứ giác . chu vi, 4 học (C.5.1;2) diện tích Các bài toán có liên quan đến hệ thức lượng trong tam giác, tỉ số lượng giác 5 Hình 2 Các bài toán hình học có liên quan đến đường tròn 4 học (C.4.1;2) Toán cực trị hình học – Bất đẳng thức hình học PHÒNG GIÁO DỤC & ĐÀO TẠO ĐẠI LỘC Trường THCS MỸ HOÀ KỲ THI CHỌN HỌC SINH GIỎI LỚP 9 NĂM HỌC 2012-2013 ĐỀ ĐỀ NGHỊ MÔN TOÁN Thời gian 150 phút (không kể thời gian giao đề) Câu 1( 5 điểm ) : 2 2 x 1 ; x 1; x 2 . 1. Cho biểu thức M = 1 x 1 1 x 1 : x 1 1 4 a. Chứng minh rằng: M= . 1 x 1 b. Với giá trị nguyên nào của x thì M có giá trị nguyên. 2. Phân tích đa thức thành nhân tử : a) x3 + 4x - 16 b) x4 + 6x3 + 7x2 - 6x – 24 Câu 2 (2 điểm ): Tìm x,y N biết : 2013x + 440 = y2 Câu 3 ( 4 điểm ): 2 2011 2 2012 2 2013 1. Chứng minh rằng : 1 2011 2 2 2 2012 2 2012 2 2013 2 2013 2 2011 2. Tìm x biết: ( x 2013) (2 x 1) 2013x 2013 2 x 2012 Câu 4 ( 4 điểm ): Cho đường tròn ( O ; R ), đường kính BC = 2R. Lấy điểm A bất kì thuộc (O); A B; C. Vẽ AH BC tại H; HE AB tại E; HF AC tại F. 1. Chứng minh AE.AB = AF.AC. 2. Chứng minh rằng EF 2 R 2 . Câu 5 ( 4 điểm ): 1. Cho tam giác nhọn ABC có số
TÀI LIỆU LIÊN QUAN
Đề thi chọn đội tuyển học sinh giỏi cấp tỉnh môn Toán 9 năm 2018-2019 có đáp án - Phòng GD&ĐT Cẩm Thủy (Lần 2)
Đề thi chọn đội tuyển học sinh giỏi môn Toán 9 năm 2017-2018 - Trường THCS Trần Mai Ninh (Vòng 1)
Đề thi chọn học sinh giỏi cấp tỉnh môn Toán 9 năm 2017-2018 - Sở GD&ĐT tỉnh Đồng Tháp
Đề thi Chọn học sinh giỏi cấp Tỉnh năm học 2014 - 2015 môn Toán 9 (Đề tham khảo) - Trường THCS Trần Thị Nhượng
Đề thi chọn HSG cấp tỉnh môn Toán 9 năm 2011-2012 - Sở GD&ĐT Nam Định
Đề thi chọn HSG cấp tỉnh môn Toán 9 năm 2011-2012 - Sở GD&ĐT Quảng Nam
Đề thi chọn HSG cấp tỉnh môn Toán 9 năm 2013-2014 - Sở GD&ĐT Quảng Nam
Đề thi chọn HSG cấp tỉnh môn Toán 9 năm 2014-2015 - Sở GD&ĐT Hà Nam
Đề thi chọn HSG cấp tỉnh môn Toán 9 năm 2014-2015 - Sở GD&ĐT Nam Định
Đề thi chọn HSG cấp tỉnh môn Toán 9 năm 2016-2017 - Sở GD&ĐT Nam Định
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.