Đang chuẩn bị liên kết để tải về tài liệu:
Lecture Signals, systems & inference – Lecture 13: Vector picture for first- and second-order statistics; MMSE and LMMSE estimation

Không đóng trình duyệt đến khi xuất hiện nút TẢI XUỐNG

The following will be discussed in this chapter: Covariance and correlation, correlation coefficient, ageometric picture, geometric interpretation of correlation coefficient, orthogonality. | Lecture Signals, systems & inference – Lecture 13: Vector picture for first- and second-order statistics; MMSE and LMMSE estimation Vector picture for first- and second-order statistics; MMSE and LMMSE estimation 6.011, Spring 2018 Lec 13 1 Covariance and correlation Covariance: eX,Y = E[(X - µX )(Y - µY )] = E[XY ] -µX µY | {z } Correlation rX,Y Shorthand notation: eXY , rXY 2 Correlation coefficient E↵ect of shifting and scaling: If V = ↵(X - β) then µV = ↵(µX -β) , V = ↵ X If W = (Y ) then VW =↵ XY For a shift- and scale-invariant measure: XY ⇢XY = = ⇢V W X Y 3 A geometric picture Think of X and Y as vectors, with inner product E[XY ] µX = E[X.1] : inner product of X and “random variable” 1 E[X 2 ] : squared length of X e = X - µX : vector di↵erence between X and “random variable” µX X e OX : length of X 4 Geometric interpretation of correlation coefficient Y - mY sY u = cos-1r X - mX sX 5 Orthogonality E[XY ] = 0 Correlation is 0, but not uncorrelated! Uncorrelated = zero covariance, i.e., E[XY ] = E[X]E[Y ] 6 MIT OpenCourseWare https://ocw.mit.edu 6.011 Signals, Systems and Inference Spring 2018 For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms. 7

Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.