Báo cáo tài liệu vi phạm
Giới thiệu
Kinh doanh - Marketing
Kinh tế quản lý
Biểu mẫu - Văn bản
Tài chính - Ngân hàng
Công nghệ thông tin
Tiếng anh ngoại ngữ
Kĩ thuật công nghệ
Khoa học tự nhiên
Khoa học xã hội
Văn hóa nghệ thuật
Sức khỏe - Y tế
Văn bản luật
Nông Lâm Ngư
Kỹ năng mềm
Luận văn - Báo cáo
Giải trí - Thư giãn
Tài liệu phổ thông
Văn mẫu
THỊ TRƯỜNG NGÀNH HÀNG
NÔNG NGHIỆP, THỰC PHẨM
Gạo
Rau hoa quả
Nông sản khác
Sữa và sản phẩm
Thịt và sản phẩm
Dầu thực vật
Thủy sản
Thức ăn chăn nuôi, vật tư nông nghiệp
CÔNG NGHIỆP
Dệt may
Dược phẩm, Thiết bị y tế
Máy móc, thiết bị, phụ tùng
Nhựa - Hóa chất
Phân bón
Sản phẩm gỗ, Hàng thủ công mỹ nghệ
Sắt, thép
Ô tô và linh kiện
Xăng dầu
DỊCH VỤ
Logistics
Tài chính-Ngân hàng
NGHIÊN CỨU THỊ TRƯỜNG
Hoa Kỳ
Nhật Bản
Trung Quốc
Hàn Quốc
Châu Âu
ASEAN
BẢN TIN
Bản tin Thị trường hàng ngày
Bản tin Thị trường và dự báo tháng
Bản tin Thị trường giá cả vật tư
Tìm
Danh mục
Kinh doanh - Marketing
Kinh tế quản lý
Biểu mẫu - Văn bản
Tài chính - Ngân hàng
Công nghệ thông tin
Tiếng anh ngoại ngữ
Kĩ thuật công nghệ
Khoa học tự nhiên
Khoa học xã hội
Văn hóa nghệ thuật
Y tế sức khỏe
Văn bản luật
Nông lâm ngư
Kĩ năng mềm
Luận văn - Báo cáo
Giải trí - Thư giãn
Tài liệu phổ thông
Văn mẫu
NGÀNH HÀNG
NÔNG NGHIỆP, THỰC PHẨM
Gạo
Rau hoa quả
Nông sản khác
Sữa và sản phẩm
Thịt và sản phẩm
Dầu thực vật
Thủy sản
Thức ăn chăn nuôi, vật tư nông nghiệp
CÔNG NGHIỆP
Dệt may
Dược phẩm, Thiết bị y tế
Máy móc, thiết bị, phụ tùng
Nhựa - Hóa chất
Phân bón
Sản phẩm gỗ, Hàng thủ công mỹ nghệ
Sắt, thép
Ô tô và linh kiện
Xăng dầu
DỊCH VỤ
Logistics
Tài chính-Ngân hàng
NGHIÊN CỨU THỊ TRƯỜNG
Hoa Kỳ
Nhật Bản
Trung Quốc
Hàn Quốc
Châu Âu
ASEAN
BẢN TIN
Bản tin Thị trường hàng ngày
Bản tin Thị trường và dự báo tháng
Bản tin Thị trường giá cả vật tư
Thông tin
Tài liệu Xanh là gì
Điều khoản sử dụng
Chính sách bảo mật
0
Trang chủ
Tài Liệu Phổ Thông
Sáng kiến kinh nghiệm
Sáng kiến kinh nghiệm: Chứng minh bất đẳng thức đại số bằng phương pháp lượng giác hóa
Đang chuẩn bị liên kết để tải về tài liệu:
Sáng kiến kinh nghiệm: Chứng minh bất đẳng thức đại số bằng phương pháp lượng giác hóa
Phụng Yến
233
24
doc
Không đóng trình duyệt đến khi xuất hiện nút TẢI XUỐNG
Tải xuống
Sáng kiến này trình bày phương pháp chứng minh bất đẳng thức đại số bằng lượng giác hóa. Với phương pháp này, chúng ta có thể chứng minh một số bất đẳng thức một cách hiệu quả hơn bằng cách thay đổi hình thức của bài toán chứng minh bất đẳng thức đại số trở thành bài toán chứng minh bất đẳng thức lượng giác. | Sáng kiến kinh nghiệm Chứng minh bất đẳng thức đại số bằng phương pháp lượng giác hóa 1 2 3 MỤC LỤC 4 5 CHƯƠNG I MỘT SỐ TÍNH CHẤT CƠ BẢN .4 6 CỦA HÀM LƯỢNG GIÁC . 4 7CHƯƠNG II MỐI TƯƠNG QUAN GIỮA CÁC. 5 8 BIỂU THỨC ĐẠI SỐ VÀ BIỂU THỨC LƯỢNG GIÁC.5 9CHƯƠNG III CHỨNG MINH BẤT ĐẲNG THỨC ĐẠI SỐ.6 10 BẰNG PHƯƠNG PHÁP LƯỢNG GIÁC.6 11 I. DẠNG 1 SỬ DỤNG HỆ THỨC SIN2X COS2X 1. 6 12 II.DẠNG 2 SỬ DỤNG ĐÁNH GIÁ . 9 13 III. DẠNG 3 SỬ DỤNG CÔNG THỨC . 11 14 IV. DẠNG 4 SỬ DỤNG CÔNG THỨC SIN2T . 14 15 . 14 16 V. DẠNG 5 ĐỔI BIẾN SỐ ĐỐI VỚI BẤT ĐẲNG THỨC TAM GIÁC.15 17 VI. MỘT SỐ VÍ DỤ ĐẶC SẮC . 17 18KẾT LUẬN. 22 19 TRONG TOÀN BỘ ĐỀ TÀI CHÚNG TÔI ĐÃ HỆ THỐNG LẠI MỘT SỐ BẤT ĐẲNG THỨC ĐẠI SỐ CÓ 20THỂ DÙNG PHƯƠNG PHÁP LƯỢNG GIÁC ĐỂ CHỨNG MINH. CHÚNG TÔI ĐÃ PHÂN LOẠI CHÚNG 21THEO TỪNG DẠNG TRÌNH BÀY CỤ THỂ PHƯƠNG PHÁP ĐỂ CHỨNG MINH VÀ CÓ NHỮNG VÍ DỤ MINH 22HỌA KÈM THEO MỖI PHƯƠNG PHÁP. NHỮNG VÍ DỤ ĐÓ ĐƯỢC SẮP XẾP TỪ ĐƠN GIẢN ĐẾN PHỨC 23TẠP VỚI LỜI GIẢI KHÁ CHI TIẾT ĐA DẠNG BAO QUÁT MỌI KHÍA CẠNH LÍ THUYẾT VÀ DỄ HIỂU CÓ 24THỂ GIÚP BẠN ĐỌC NẮM BẮT NHANH VÀ HIỆU QUẢ PHƯƠNG PHÁP LƯỢNG GIÁC TRONG CHỨNG 25MINH BẤT ĐẲNG THỨC ĐẠI SỐ. SAU KHI ĐỌC ĐỀ TÀI BẠN ĐỌC SẼ CÓ THÊM MỘT PHƯƠNG PHÁP 26MỚI ĐỂ CHỨNG MINH MỘT SỐ BÀI TOÁN BẤT ĐẲNG THỨC ĐẠI SỐ MỘT CÁCH HIỆU QUẢ HƠN.22 27 TUY NHIÊN VÌ TRONG THỜI GIAN NGẮN VÀ KIẾN THỨC CHƯA SÂU RỘNG NÊN CÓ NHỮNG BÀI 28TOÁN BẤT ĐẲNG THỨC DÙNG LƯỢNG GIÁC HÓA ĐỂ CHỨNG MINH NHƯNG KHÔNG THEO MỘT 29PHƯƠNG PHÁP ĐẶT ẨN PHỤ CỤ THỂ NÀO MÀ DỰA VÀO NHỮNG TÍNH CHẤT ĐẶC BIỆT CỦA CÁC 30HÀM SỐ LƯỢNG GIÁC VÀ NHỮNG YẾU TỐ TRONG BÀI TOÁN ĐỂ CHỨNG MINH KHÔNG ĐƯỢC 31CHÚNG TÔI TRÌNH BÀY CỤ THỂ VÀ CHI TIẾT TRONG ĐỀ TÀI NÀY. CHÚNG TÔI RẤT MONG NHẬN 32ĐƯỢC SỰ ĐÓNG GÓP NHẬN XÉT CỦA BẠN ĐỌC VỀ NỘI DUNG ĐỀ TÀI.22 33TÀI LIỆU THAM KHẢO. 23 34 1 2 1LỜI NÓI ĐẦU 2 3 Như chúng ta đã biết bất đẳng thức đại số đóng vai trò rất to lớn trong 4toán học. Tuy nhiên để vận dụng chúng trong quá trình giải quyết một số vấn 5đề của toán học thì việc chứng minh tính đúng đắn của chúng là vô cùng quan .
TÀI LIỆU LIÊN QUAN
Sáng kiến kinh nghiệm THCS: Một số kỹ năng cơ bản khi sử dụng bất đẳng thức Cauchy - Schwarz vào chứng minh bất đẳng thức
SKKN: Áp dụng bất đẳng thức phụ để tìm GTLN, GTNN và chứng minh bất đẳng thức
Sáng kiến kinh nghiệm THCS: Sử dụng bất đẳng thức Cauchy vào chứng minh bất đẳng thức và tìm cực trị
Sáng kiến kinh nghiệm: Dạy học sinh sử dụng bất đẳng thức vectơ để giải các bài toán chứng minh bất đẳng thức
Sáng kiến kinh nghiệm: Một số kinh nghiệm giải bài toán bất đẳng thức
SKKN: Rèn luyện cho học sinh sử dụng đạo hàm để chứng minh bất đẳng thức
SKKN: Dự đoán dấu bằng trong bất đẳng thức Cô-si để tìm GTLN, GTNN và chứng minh bất đẳng thức
Sáng kiến kinh nghiệm THCS: Một số phương pháp chứng minh bất đẳng thức
SKKN: Phát triển tư duy cho học sinh thông qua việc chứng minh bất đẳng thức từ dãy các bất đẳng thức cơ bản
SKKN: Bồi dưỡng tư duy sáng tạo qua việc chứng minh bất đẳng thức
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.