Báo cáo tài liệu vi phạm
Giới thiệu
Kinh doanh - Marketing
Kinh tế quản lý
Biểu mẫu - Văn bản
Tài chính - Ngân hàng
Công nghệ thông tin
Tiếng anh ngoại ngữ
Kĩ thuật công nghệ
Khoa học tự nhiên
Khoa học xã hội
Văn hóa nghệ thuật
Sức khỏe - Y tế
Văn bản luật
Nông Lâm Ngư
Kỹ năng mềm
Luận văn - Báo cáo
Giải trí - Thư giãn
Tài liệu phổ thông
Văn mẫu
THỊ TRƯỜNG NGÀNH HÀNG
NÔNG NGHIỆP, THỰC PHẨM
Gạo
Rau hoa quả
Nông sản khác
Sữa và sản phẩm
Thịt và sản phẩm
Dầu thực vật
Thủy sản
Thức ăn chăn nuôi, vật tư nông nghiệp
CÔNG NGHIỆP
Dệt may
Dược phẩm, Thiết bị y tế
Máy móc, thiết bị, phụ tùng
Nhựa - Hóa chất
Phân bón
Sản phẩm gỗ, Hàng thủ công mỹ nghệ
Sắt, thép
Ô tô và linh kiện
Xăng dầu
DỊCH VỤ
Logistics
Tài chính-Ngân hàng
NGHIÊN CỨU THỊ TRƯỜNG
Hoa Kỳ
Nhật Bản
Trung Quốc
Hàn Quốc
Châu Âu
ASEAN
BẢN TIN
Bản tin Thị trường hàng ngày
Bản tin Thị trường và dự báo tháng
Bản tin Thị trường giá cả vật tư
Tìm
Danh mục
Kinh doanh - Marketing
Kinh tế quản lý
Biểu mẫu - Văn bản
Tài chính - Ngân hàng
Công nghệ thông tin
Tiếng anh ngoại ngữ
Kĩ thuật công nghệ
Khoa học tự nhiên
Khoa học xã hội
Văn hóa nghệ thuật
Y tế sức khỏe
Văn bản luật
Nông lâm ngư
Kĩ năng mềm
Luận văn - Báo cáo
Giải trí - Thư giãn
Tài liệu phổ thông
Văn mẫu
NGÀNH HÀNG
NÔNG NGHIỆP, THỰC PHẨM
Gạo
Rau hoa quả
Nông sản khác
Sữa và sản phẩm
Thịt và sản phẩm
Dầu thực vật
Thủy sản
Thức ăn chăn nuôi, vật tư nông nghiệp
CÔNG NGHIỆP
Dệt may
Dược phẩm, Thiết bị y tế
Máy móc, thiết bị, phụ tùng
Nhựa - Hóa chất
Phân bón
Sản phẩm gỗ, Hàng thủ công mỹ nghệ
Sắt, thép
Ô tô và linh kiện
Xăng dầu
DỊCH VỤ
Logistics
Tài chính-Ngân hàng
NGHIÊN CỨU THỊ TRƯỜNG
Hoa Kỳ
Nhật Bản
Trung Quốc
Hàn Quốc
Châu Âu
ASEAN
BẢN TIN
Bản tin Thị trường hàng ngày
Bản tin Thị trường và dự báo tháng
Bản tin Thị trường giá cả vật tư
Thông tin
Tài liệu Xanh là gì
Điều khoản sử dụng
Chính sách bảo mật
0
Trang chủ
Công Nghệ Thông Tin
Cơ sở dữ liệu
Ứng dụng phương pháp bình chọn các mô hình trí tuệ nhân tạo để phân loại hai lớp và đa lớp trong xây dựng
Đang chuẩn bị liên kết để tải về tài liệu:
Ứng dụng phương pháp bình chọn các mô hình trí tuệ nhân tạo để phân loại hai lớp và đa lớp trong xây dựng
Hữu Bảo
873
6
pdf
Không đóng trình duyệt đến khi xuất hiện nút TẢI XUỐNG
Tải xuống
Bài viết sử dụng hai bộ dữ liệu về sự hóa lỏng đất (hai lớp) và lỗi sai trên thép tấm (đa lớp) để kiểm tra tính hiệu quả của mô hình đề xuất. Kết quả cho thấy mô hình voting vượt trội so với các mô hình so sánh khác trong việc phân loại dữ liệu. Trong đó, NBDT là mô hình voting tốt nhất khi phân loại bộ dữ liệu hai lớp (87.168%) và SVM-DT cho hiệu suất làm việc tốt nhất khi phân loại bộ dữ liệu đa lớp (89.505%). | 146 KỶ YẾU HỘI THẢO KHOA HỌC QUỐC GIA CITA 2020 CNTT VÀ ỨNG DỤNG TRONG CÁC LĨNH VỰC Ứng dụng phương pháp bình chọn các mô hình trí tuệ nhân tạo để phân loại hai lớp và đa lớp trong xây dựng Phạm Thị Phương Trang Danang of Technology and Education The University of Danang ptptrang@ute.udn.vn Tóm tắt. Phân loại là một trong những nhiệm vụ quan trọng trong lĩnh vực xây dựng. Phân loại có hai dạng chính là phân loại hai lớp và đa lớp nhiều hơn hai lớp . Nếu phân loại chính xác các nhà quản lý có thể giảm thiểu tối đa mức độ rủi ro trong quá trình thực hiện công việc. Do đó việc tạo ra mô hình có thể dự báo đồng thời các bộ dữ liệu hai lớp và đa lớp với hiệu quả cao là mối quan tâm của các nhà nghiên cứu khoa học. Mục tiêu của bài báo là đề xuất phương pháp bình chọn voting để tạo nên mô hình tối ưu nhất giải quyết bài toán phân loại trong xây dựng. Mô hình voting được xây dựng từ ba mô hình phân loại trí tuệ nhân tạo đơn lẻ phổ biến đó là máy học vectơ hỗ trợ SVM Navie Bayes NB và Cây quyết định DT . Trong nghiên cứu này tác giả sử dụng hai bộ dữ liệu về sự hóa lỏng đất hai lớp và lỗi sai trên thép tấm đa lớp để kiểm tra tính hiệu quả của mô hình đề xuất. Kết quả cho thấy mô hình voting vượt trội so với các mô hình so sánh khác trong việc phân loại dữ liệu. Trong đó NB- DT là mô hình voting tốt nhất khi phân loại bộ dữ liệu hai lớp 87.168 và SVM-DT cho hiệu suất làm việc tốt nhất khi phân loại bộ dữ liệu đa lớp 89.505 . Từ khóa Trí tuệ nhân tạo máy học vectơ hỗ trợ Navie Bayes cây quyết định. Abstract. Classification can be considered one of critical tasks in civil engineering. Classification problem includes two main forms - binary and multiclass classification more than two classes . Clearly with the accurate classification the managers can reduce a minimum of the level of risk in work progress. Therefore creating a model which predicts both binary classification and multiclass classification is the concern of researchers. The goal of the study is to propose .
TÀI LIỆU LIÊN QUAN
Khảo sát ứng dụng phương pháp bình sai truy hồi trong xử lý số liệu lưới trắc địa công trình - Trần Khánh
Tóm tắt luận văn Thạc sĩ Toán học: Phương pháp bình phương nhỏ nhất và ứng dụng
Bài giảng Phương pháp bình phương tối thiểu
Tóm tắt luận văn Thạc sĩ Khoa học: Phương pháp bình phương nhỏ nhất và ứng dụng
Ước lượng trạng thái hệ thống điện bằng phương pháp bình phương cực tiểu có trọng số
Ứng dụng phương pháp bình phương nhỏ nhất để xác định tỷ lệ phối hợp các nhóm cốt liệu trong bê tông nhựa
Ebook Phong thủy thực vật: Phần 2
Bài giảng Toán ứng dụng - Phan Phương Dung
Bài giảng Applied numerical methods (Ứng dụng phương pháp tính số): Chương 4 - TS. Ngô Văn Thanh
Bài giảng toán ứng dụng: Phương pháp tính
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.