Báo cáo tài liệu vi phạm
Giới thiệu
Kinh doanh - Marketing
Kinh tế quản lý
Biểu mẫu - Văn bản
Tài chính - Ngân hàng
Công nghệ thông tin
Tiếng anh ngoại ngữ
Kĩ thuật công nghệ
Khoa học tự nhiên
Khoa học xã hội
Văn hóa nghệ thuật
Sức khỏe - Y tế
Văn bản luật
Nông Lâm Ngư
Kỹ năng mềm
Luận văn - Báo cáo
Giải trí - Thư giãn
Tài liệu phổ thông
Văn mẫu
THỊ TRƯỜNG NGÀNH HÀNG
NÔNG NGHIỆP, THỰC PHẨM
Gạo
Rau hoa quả
Nông sản khác
Sữa và sản phẩm
Thịt và sản phẩm
Dầu thực vật
Thủy sản
Thức ăn chăn nuôi, vật tư nông nghiệp
CÔNG NGHIỆP
Dệt may
Dược phẩm, Thiết bị y tế
Máy móc, thiết bị, phụ tùng
Nhựa - Hóa chất
Phân bón
Sản phẩm gỗ, Hàng thủ công mỹ nghệ
Sắt, thép
Ô tô và linh kiện
Xăng dầu
DỊCH VỤ
Logistics
Tài chính-Ngân hàng
NGHIÊN CỨU THỊ TRƯỜNG
Hoa Kỳ
Nhật Bản
Trung Quốc
Hàn Quốc
Châu Âu
ASEAN
BẢN TIN
Bản tin Thị trường hàng ngày
Bản tin Thị trường và dự báo tháng
Bản tin Thị trường giá cả vật tư
Tìm
Danh mục
Kinh doanh - Marketing
Kinh tế quản lý
Biểu mẫu - Văn bản
Tài chính - Ngân hàng
Công nghệ thông tin
Tiếng anh ngoại ngữ
Kĩ thuật công nghệ
Khoa học tự nhiên
Khoa học xã hội
Văn hóa nghệ thuật
Y tế sức khỏe
Văn bản luật
Nông lâm ngư
Kĩ năng mềm
Luận văn - Báo cáo
Giải trí - Thư giãn
Tài liệu phổ thông
Văn mẫu
NGÀNH HÀNG
NÔNG NGHIỆP, THỰC PHẨM
Gạo
Rau hoa quả
Nông sản khác
Sữa và sản phẩm
Thịt và sản phẩm
Dầu thực vật
Thủy sản
Thức ăn chăn nuôi, vật tư nông nghiệp
CÔNG NGHIỆP
Dệt may
Dược phẩm, Thiết bị y tế
Máy móc, thiết bị, phụ tùng
Nhựa - Hóa chất
Phân bón
Sản phẩm gỗ, Hàng thủ công mỹ nghệ
Sắt, thép
Ô tô và linh kiện
Xăng dầu
DỊCH VỤ
Logistics
Tài chính-Ngân hàng
NGHIÊN CỨU THỊ TRƯỜNG
Hoa Kỳ
Nhật Bản
Trung Quốc
Hàn Quốc
Châu Âu
ASEAN
BẢN TIN
Bản tin Thị trường hàng ngày
Bản tin Thị trường và dự báo tháng
Bản tin Thị trường giá cả vật tư
Thông tin
Tài liệu Xanh là gì
Điều khoản sử dụng
Chính sách bảo mật
0
Trang chủ
Công Nghệ Thông Tin
Cơ sở dữ liệu
Bài giảng Nhập môn Học máy và Khai phá dữ liệu: Chương 5 - Nguyễn Nhật Quang
Đang chuẩn bị liên kết để tải về tài liệu:
Bài giảng Nhập môn Học máy và Khai phá dữ liệu: Chương 5 - Nguyễn Nhật Quang
Gia Hiệp
389
24
pdf
Không đóng trình duyệt đến khi xuất hiện nút TẢI XUỐNG
Tải xuống
Bài giảng Nhập môn Học máy và Khai phá dữ liệu: Chương 5, chương này cung cấp cho học viên những nội dung về: phân lớp; bài toán phân lớp; học dựa trên các láng giềng gần nhất (Nearest neighbors learning); ma trận nhầm lẫn (Confusion matrix); giải thuật phân lớp k-NN; . Mời các bạn cùng tham khảo chi tiết nội dung bài giảng! | Nhập môn Học máy và Khai phá dữ liệu IT3190 Nguyễn Nhật Quang quang.nguyennhat@hust.edu.vn Trường Đại học Bách Khoa Hà Nội Viện Công nghệ thông tin và truyền thông Năm học 2020-2021 Nội dung môn học Giới thiệu về Học máy và Khai phá dữ liệu Tiền xử lý dữ liệu Đánh giá hiệu năng của hệ thống Hồi quy Phân lớp Bài toán phân lớp Học dựa trên các láng giềng gần nhất Nearest neighbors learning Phân cụm Phát hiện luật kết hợp Nhập môn Học máy và Khai phá dữ liệu Introduction to Machine learning and Data mining 2 Bài toán phân lớp Phân lớp classification thuộc nhóm bài toán học có giám sát supervised learning Mục tiêu của bài toán phân lớp là dự đoán một giá trị rời rạc kiểu định danh f X Y trong đó Y là tập hữu hạn các giá trị rời rạc discrete values Nhập môn Học máy và Khai phá dữ liệu Introduction to Machine learning and Data mining 3 Bài toán phân lớp Đánh giá hiệu năng Identical o x c x 1 Accuracy D _ test x D _ test 1 if a b Identical a b 0 if otherwise x Một ví dụ trong tập thử nghiệm D_test o x Phân lớp đưa ra bởi hệ thống đối với ví dụ x c x Phân lớp thực sự đúng đối với ví dụ x Nhập môn Học máy và Khai phá dữ liệu Introduction to Machine learning and Data mining 4 Ma trận nhầm lẫn Confusion matrix Còn được gọi là Contingency Table Chỉ được sử dụng đối với bài toán phân lớp Không thể áp dụng cho bài toán hồi quy dự đoán TPi Số lượng các ví dụ thuộc lớp ci được phân loại Được phân lớp chính xác vào lớp ci Lớp ci bởi hệ thống FPi Số lượng các ví dụ không thuộc lớp ci bị phân Thuộc Ko thuộc loại nhầm vào lớp ci TNi Số lượng các ví dụ Phân lớp Thuộc TPi FNi không thuộc lớp ci được thực sự phân loại chính xác đúng Ko thuộc FPi TNi FNi Số lượng các ví dụ thuộc lớp ci- bị phân loại nhầm vào các lớp khác ci Nhập môn Học máy và Khai phá dữ liệu Introduction to Machine learning and Data mining 5 Precision and Recall 1 Rất hay được sử dụng để đánh giá các hệ thống phân lớp văn bản document classification Precision đối với lớp ci TPi Pr ecision ci Tổng số các ví dụ thuộc lớp
TÀI LIỆU LIÊN QUAN
Bài giảng Nhập môn Học máy và Khai phá dữ liệu - Chương 1.2: Giới thiệu về Học máy và khai phá dữ liệu
Bài giảng Nhập môn Học máy và Khai phá dữ liệu - Chương 1: Giới thiệu về Học máy và khai phá dữ liệu
Bài giảng Nhập môn Học máy và Khai phá dữ liệu - Chương 12: Khai phá tập mục thường xuyên và các luật kết hợp
Bài giảng Nhập môn Học máy và Khai phá dữ liệu - Chương 0: Giới thiệu môn học
Bài giảng Nhập môn Học máy và Khai phá dữ liệu - Chương 2: Thu thập và tiền xử lý dữ liệu
Bài giảng Nhập môn Học máy và Khai phá dữ liệu: Chương 2 - Nguyễn Nhật Quang
Bài giảng Nhập môn Học máy và Khai phá dữ liệu - Chương 6: Phân loại và đánh giá hiệu năng
Bài giảng Nhập môn Học máy và Khai phá dữ liệu: Chương 1 - Nguyễn Nhật Quang
Bài giảng Nhập môn Học máy và Khai phá dữ liệu - Chương 11: Máy vector hỗ trợ (SVM)
Bài giảng Nhập môn Học máy và Khai phá dữ liệu: Chương 5 - Nguyễn Nhật Quang
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.