Báo cáo tài liệu vi phạm
Giới thiệu
Kinh doanh - Marketing
Kinh tế quản lý
Biểu mẫu - Văn bản
Tài chính - Ngân hàng
Công nghệ thông tin
Tiếng anh ngoại ngữ
Kĩ thuật công nghệ
Khoa học tự nhiên
Khoa học xã hội
Văn hóa nghệ thuật
Sức khỏe - Y tế
Văn bản luật
Nông Lâm Ngư
Kỹ năng mềm
Luận văn - Báo cáo
Giải trí - Thư giãn
Tài liệu phổ thông
Văn mẫu
THỊ TRƯỜNG NGÀNH HÀNG
NÔNG NGHIỆP, THỰC PHẨM
Gạo
Rau hoa quả
Nông sản khác
Sữa và sản phẩm
Thịt và sản phẩm
Dầu thực vật
Thủy sản
Thức ăn chăn nuôi, vật tư nông nghiệp
CÔNG NGHIỆP
Dệt may
Dược phẩm, Thiết bị y tế
Máy móc, thiết bị, phụ tùng
Nhựa - Hóa chất
Phân bón
Sản phẩm gỗ, Hàng thủ công mỹ nghệ
Sắt, thép
Ô tô và linh kiện
Xăng dầu
DỊCH VỤ
Logistics
Tài chính-Ngân hàng
NGHIÊN CỨU THỊ TRƯỜNG
Hoa Kỳ
Nhật Bản
Trung Quốc
Hàn Quốc
Châu Âu
ASEAN
BẢN TIN
Bản tin Thị trường hàng ngày
Bản tin Thị trường và dự báo tháng
Bản tin Thị trường giá cả vật tư
Tìm
Danh mục
Kinh doanh - Marketing
Kinh tế quản lý
Biểu mẫu - Văn bản
Tài chính - Ngân hàng
Công nghệ thông tin
Tiếng anh ngoại ngữ
Kĩ thuật công nghệ
Khoa học tự nhiên
Khoa học xã hội
Văn hóa nghệ thuật
Y tế sức khỏe
Văn bản luật
Nông lâm ngư
Kĩ năng mềm
Luận văn - Báo cáo
Giải trí - Thư giãn
Tài liệu phổ thông
Văn mẫu
NGÀNH HÀNG
NÔNG NGHIỆP, THỰC PHẨM
Gạo
Rau hoa quả
Nông sản khác
Sữa và sản phẩm
Thịt và sản phẩm
Dầu thực vật
Thủy sản
Thức ăn chăn nuôi, vật tư nông nghiệp
CÔNG NGHIỆP
Dệt may
Dược phẩm, Thiết bị y tế
Máy móc, thiết bị, phụ tùng
Nhựa - Hóa chất
Phân bón
Sản phẩm gỗ, Hàng thủ công mỹ nghệ
Sắt, thép
Ô tô và linh kiện
Xăng dầu
DỊCH VỤ
Logistics
Tài chính-Ngân hàng
NGHIÊN CỨU THỊ TRƯỜNG
Hoa Kỳ
Nhật Bản
Trung Quốc
Hàn Quốc
Châu Âu
ASEAN
BẢN TIN
Bản tin Thị trường hàng ngày
Bản tin Thị trường và dự báo tháng
Bản tin Thị trường giá cả vật tư
Thông tin
Tài liệu Xanh là gì
Điều khoản sử dụng
Chính sách bảo mật
0
Trang chủ
Tài Liệu Phổ Thông
Trung học cơ sở
Giải PT Nghiệm Nguyên
Đang chuẩn bị liên kết để tải về tài liệu:
Giải PT Nghiệm Nguyên
Thục Trinh
172
7
pdf
Không đóng trình duyệt đến khi xuất hiện nút TẢI XUỐNG
Tải xuống
" Giải PT Nghiệm Nguyên " giúp các em học sinh có tài liệu ôn tập, luyện tập nhằm nắm vững được những kiến thức, kĩ năng cơ bản, đồng thời vận dụng kiến thức để giải các bài tập toán học một cách thuận lợi và tự kiểm tra đánh giá kết quả học tập của mình | PHƯƠNG TRÌNH NGHIỆM NGUYÊN A.Các phương trình cơ bản I Phương trình bậc nhất hai ấn Định nghĩa ax by c với a b c là các số nguyên cho trước Đinh lí Giả sử a b là xác số nguyên dương và d a b khi đó 1 vô nghiệm nếu c d và vô số nghiệm nếu c d Hơn nữa nếu xo y là nghiệm của 1 thì phương trình có nhiệm tổng quát x y f xo bn yo an d d Chứng minh giành cho bạn đọc Ví dụi Giải phương trình nhiệm nguyên 21x 6y 1988. 1988 Giải Ta có 7x 2y 3 không tồn tại x ye Z thỏa 7x 2y không nguyên Ví dụ 2 Giải phương trình nhiệm nguyên 12x 3y 216 Giải Ta có x 216 3y 18 - y 4n x 18 - n n e Z 12 4 II Phương trình PITAGO Định nghĩa x2 y2 z2 Định lí 1. x y z 1 x y y z z x 1 2. x y z 1 x y khác tính chẵn lẻ r s - 1thì r 2 s h 2 rs k 2 3. í Chứng minh Giành cho bạn đọc xem như một bài tập Giải phương trình PITAGO Giả sử x y z d x . o z0 f x y z ì . d d d 0 Theo định lí 1 ta có thể giả sử yo chẵn Ta có xo2 y2 zo2 y2 zo - xo zo xo 1 Theo đ ịnh lí 2 zo xo 2 zo - xo . 2 zo xo 2m2 z o - xo 2n 2 x0 y0 22 m - n z0 2mn 22 m n 1 í với m n là các số nguyên B.Các phương trình không mẫu mực Chúng ta đã làm quen những phương trình nghiệm nguyên cơ bản nhất và lâu đời nhất trong toán học.Nhưng cũng như mọi lĩnh vực khác trong toán học phương trìng nhiệm nguyên ngày càng phát triển càng khó . Điển hình là phương trình xn yn zn mãi đến gần đây người ta mới giải được nhưng phải dùng đến những kiến thức toán cao cấp và lời thì vô cùng sâu sắc Tuy nhiên nếu chỉ xét các bài toán ở phổ thông thì chúng ta có thể đúc kết ba phương pháp cơ bản nhất 1 Sử dụng các tíng chất của số nguyên các định lí của số học 2 Sử dụng bất đẳng thức để thu hẹp miền giá trị của tập nghiệm sau đó có thể thế từng giá trị 3 Phương pháp lùi vô hạn phương pháp náy do FERMAT sáng tạo ra khi giải phương trình 1 Sử dụng các tíng chất của số nguyên các đinh lí của số học a Đưa về dạng tích Ý tưởng của b ài to án l à đ ưa v ề d ạng f1 x y . f2 x y . fn x y . a1a2.an v ới a1 a2 . an e Z .Rồi xét mọi trường hợp có thể Ví dụ Giải phương trình .
TÀI LIỆU LIÊN QUAN
SKKN: Dùng bất đằng thức để giải PT, hệ PT
SKKN: Giải bài toán bằng cách lập PT và hệ PT trong chương trình môn Toán lớp 9
SKKN: Ứng dụng định lý Vi-et giải một số dạng toán PT bậc 2 quy về bậc 2 có tham số
SKKN: Giải pháp nâng cao chất lượng giảng dạy Lịch sử địa phương ở trường PT DTNT Tây nguyên
Sáng kiến kinh nghiệm: Giải pháp nâng cao chất lượng giảng dạy Lịch sử địa phương ở trường PT DTNT Tây Nguyên
Sáng kiến kinh nghiệm THCS: Ứng dụng hệ thức Vi-ét để giải quyết một số dạng toán về PT bậc hai một ẩn cho HS lớp 9
Sáng kiến kinh nghiệm THPT: Giải pháp xây dựng động cơ học tập và rèn luyện đạo đức cho học sinh lớp 10 ở trường PT dân tộc nội trú THPT An Giang qua công tác chủ nhiệm
Sáng kiến kinh nghiệm THPT: Một số giải pháp nhằm nâng cao tính tự giác, tích cực trong môn học thể dục của học sinh khối 10 Trường PT DTNT C2+3 Vĩnh Phúc
Sáng kiến kinh nghiệm THPT: Giải pháp nâng cao chất lượng dạy tin học Pascal lớp 11 tại Trường PT DTNT C23 Vĩnh Phúc
SKKN: Hướng dẫn học sinh khá giỏi giải một số dạng toán điển hình về PT – BPT – HPT chứa tham số
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.