Đang chuẩn bị liên kết để tải về tài liệu:
Bài giảng 15b - Phân tích dữ liệu CVM

Không đóng trình duyệt đến khi xuất hiện nút TẢI XUỐNG

Tham khảo tài liệu 'bài giảng 15b - phân tích dữ liệu cvm', công nghệ thông tin, cơ sở dữ liệu phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả | Bài giảng 15b: Phân tích dữ liệu CVM Trương Đăng Thụy Sampling techniques Non-Probabilistic Convenient sample: asembles sample at the convenience of researcher Judgement sample: a panel of respondents judged to be representative of the target population is assembled. Quota sample: Selection is controlled by interviewer, ensuring that sample contain given proportion of various types of respondents. Sampling techniques Probabilistic Simple random sampling: every respondents in the sample frame has the same chance of being selected. Systematic sampling: select every kth respondent from a randomly-ordered population frame. Stratified sampling: sampling frame is divided into sub-populations (strata), using random sampling for each stratum. Clustered sampling: population is divided into a set of groups (clusters), and clusters are randomly selected. All elements in the chosen clusters will be included. Multi-stage sampling: random sample of elements within the randomly-chosen clusters. . | Bài giảng 15b: Phân tích dữ liệu CVM Trương Đăng Thụy Sampling techniques Non-Probabilistic Convenient sample: asembles sample at the convenience of researcher Judgement sample: a panel of respondents judged to be representative of the target population is assembled. Quota sample: Selection is controlled by interviewer, ensuring that sample contain given proportion of various types of respondents. Sampling techniques Probabilistic Simple random sampling: every respondents in the sample frame has the same chance of being selected. Systematic sampling: select every kth respondent from a randomly-ordered population frame. Stratified sampling: sampling frame is divided into sub-populations (strata), using random sampling for each stratum. Clustered sampling: population is divided into a set of groups (clusters), and clusters are randomly selected. All elements in the chosen clusters will be included. Multi-stage sampling: random sample of elements within the randomly-chosen clusters. Sample size Coefficient of variation: Necessary sample size: If V=1, =.05 (for Z=1.96), =.1. Then sample size must be 385. In this session Data of WTP Estimating mean and median WTP Non-parametric Parametric Testing validity of WTP values Exercise Data of WTP Three types of CV data: Continuous data (results from open-ended or bidding game questions) Binary data (response “yes” or “no” to a bid level) Interval data (payment card or double-bounded choice) Estimating mean and median WTP: non-parametric Continuous data Imagine a dataset of max WTP of HH/ind Total number of HH is N There are J diferent values of WTP. J might be smaller than N for there could be several HH/ind reporting the same WTP Order the values of WTP Cj from lowest to highest (J=0,J). C0 is always zero and CJ is largest in the sample Let hj is the number of HH/ind in the sample with WTP of Cj Total number of HH/ind with a WTP greater than Cj will be The survivor function is Mean WTP is Estimating mean and median WTP: .

TÀI LIỆU LIÊN QUAN
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.