Báo cáo tài liệu vi phạm
Giới thiệu
Kinh doanh - Marketing
Kinh tế quản lý
Biểu mẫu - Văn bản
Tài chính - Ngân hàng
Công nghệ thông tin
Tiếng anh ngoại ngữ
Kĩ thuật công nghệ
Khoa học tự nhiên
Khoa học xã hội
Văn hóa nghệ thuật
Sức khỏe - Y tế
Văn bản luật
Nông Lâm Ngư
Kỹ năng mềm
Luận văn - Báo cáo
Giải trí - Thư giãn
Tài liệu phổ thông
Văn mẫu
THỊ TRƯỜNG NGÀNH HÀNG
NÔNG NGHIỆP, THỰC PHẨM
Gạo
Rau hoa quả
Nông sản khác
Sữa và sản phẩm
Thịt và sản phẩm
Dầu thực vật
Thủy sản
Thức ăn chăn nuôi, vật tư nông nghiệp
CÔNG NGHIỆP
Dệt may
Dược phẩm, Thiết bị y tế
Máy móc, thiết bị, phụ tùng
Nhựa - Hóa chất
Phân bón
Sản phẩm gỗ, Hàng thủ công mỹ nghệ
Sắt, thép
Ô tô và linh kiện
Xăng dầu
DỊCH VỤ
Logistics
Tài chính-Ngân hàng
NGHIÊN CỨU THỊ TRƯỜNG
Hoa Kỳ
Nhật Bản
Trung Quốc
Hàn Quốc
Châu Âu
ASEAN
BẢN TIN
Bản tin Thị trường hàng ngày
Bản tin Thị trường và dự báo tháng
Bản tin Thị trường giá cả vật tư
Tìm
Danh mục
Kinh doanh - Marketing
Kinh tế quản lý
Biểu mẫu - Văn bản
Tài chính - Ngân hàng
Công nghệ thông tin
Tiếng anh ngoại ngữ
Kĩ thuật công nghệ
Khoa học tự nhiên
Khoa học xã hội
Văn hóa nghệ thuật
Y tế sức khỏe
Văn bản luật
Nông lâm ngư
Kĩ năng mềm
Luận văn - Báo cáo
Giải trí - Thư giãn
Tài liệu phổ thông
Văn mẫu
NGÀNH HÀNG
NÔNG NGHIỆP, THỰC PHẨM
Gạo
Rau hoa quả
Nông sản khác
Sữa và sản phẩm
Thịt và sản phẩm
Dầu thực vật
Thủy sản
Thức ăn chăn nuôi, vật tư nông nghiệp
CÔNG NGHIỆP
Dệt may
Dược phẩm, Thiết bị y tế
Máy móc, thiết bị, phụ tùng
Nhựa - Hóa chất
Phân bón
Sản phẩm gỗ, Hàng thủ công mỹ nghệ
Sắt, thép
Ô tô và linh kiện
Xăng dầu
DỊCH VỤ
Logistics
Tài chính-Ngân hàng
NGHIÊN CỨU THỊ TRƯỜNG
Hoa Kỳ
Nhật Bản
Trung Quốc
Hàn Quốc
Châu Âu
ASEAN
BẢN TIN
Bản tin Thị trường hàng ngày
Bản tin Thị trường và dự báo tháng
Bản tin Thị trường giá cả vật tư
Thông tin
Tài liệu Xanh là gì
Điều khoản sử dụng
Chính sách bảo mật
0
Trang chủ
Khoa Học Tự Nhiên
Toán học
Giáo trình toán cao cấp 1
Đang chuẩn bị liên kết để tải về tài liệu:
Giáo trình toán cao cấp 1
Trí Hào
199
180
pdf
Không đóng trình duyệt đến khi xuất hiện nút TẢI XUỐNG
Tải xuống
Tài liệu “Giáo trình toán cao cấp” được biên soạn với mục đích nhằm cung cấp cho sinh viên 1 số kiến thức cơ bản của toán học cao cấp làm cơ sở cho việc tiếp thu các môn học cơ sở và chuyên môn thuộc các chuyên ngành sinh viên được đào tạo. | CHƯƠNG 1 KHÁI NIỆM VỀ TẬP HỢP VÀ ÁNH XẠ 1. TẬP HỢP 1.1 CÁC KHÁI NIỆM CƠ BẢN Trong ngôn ngữ hàng ngày ta thường dùng đến khái niệm tập hợp tập hợp các sinh viên có mặt trong một lớp học tập hợp các câu hỏi ôn thi.ớ đây ta không định nghĩa tập hợp mà chỉ mô tả nó bằng một dấu hiệu hay một tính chất nào đó cho phép ta nhận biết được tập hợp đó và phân biệt nó với các tập hợp khác. Ta coi tập hợp là một khái niệm nguyên thuỷ cũng giống như khái niệm điểm đường thẳng mặt phang trong hình học. Các đối tượng lập nên tập hợp được gọi là các phần tử của tập hợp. Nếu a là một phần tử của tập hợp A thì ta ký hiệu a E A đọc a thuộc A Nếu a không phải là một phần tử của tập hợp A thì ta ký hiệu a ị A đọc a không thuộc A Ví dụ Nếu A là tập hợp các số nguyên chẵn thì 2 E A 10 E A nhưng 15 ị A. Một tập hợp được gọi là hữu hạn nếu nó gồm một số nhất định phần tử. Ví dụ Tập hợp các sinh viên của một lớp học là hữu hạn số phần tử ở đây là số sinh viên của lớp đó. Tập hợp các nghiệm của phương trình x2 3x 2 0 là hữu hạn nó gồm hai phần tử là 1 và 2. Có những tập hợp chỉ có đúng một phần tử chẳng hạn tập hợp các nghiệm dương nhỏ hơn 2 của phương trình sin x 2 chỉ có một phần tử là n. Để được thuận tiện người ta cũng đưa vào loại tập hợp không chứa một phần tử nào và gọi nó là tập hợp rỗng ký hiệu là 0. Ví dụ Tập hợp các nghiệm thực của phương trình x 1 0 là rỗng vì không tồn tại số thực nào mà bình phương lại bằng 1. Tập hợp gồm vô số phần tử gọi là tập hợp vô hạn. Người ta phân biệt Bộ môn KHCB 1 Giáo trình toán cao cấp 1 Tập hợp vô hạn đếm được là tập hợp tuy số lượng phần tử là vô hạn song ta có thể đánh số thứ tự các phần tử của nó tức là có thể biết được phần tử đứng liền trước và đứng liền sau của một phần tử bất kỳ . Ví dụ Tập hợp các nghiệm của phương trình sin x 1 là vô hạn đếm được vì các phần tử của nó có dạng xk 2 2kn với k 0 1 2 3 . chúng được đánh số theo số nguyên k . Tập hợp vô hạn không đếm được là tập hợp có vô số phần tử và không có cách nào đánh số thứ tự các phần .
TÀI LIỆU LIÊN QUAN
Giáo trình toán cao cấp C2 Cao đẳng - ĐH Công nghiệp Tp. HCM
Bài giảng Toán cao cấp A2 - TS. Lê Bá Long
Giáo trình toán cao cấp A2 - ĐH Quốc gia Tp.HCM
Giáo trình toán cao cấp A3 ĐH - GV. ThS Đoàn Vương Nguyên
Giáo trình Toán cao cấp C1 - Nguyễn Thành Long, Nguyễn Công Tâm - ĐH Quốc gia tp.HCM
Bài giảng toán cao cấp A1 Cao đẳng - Ths. Đoàn Vương Nguyên
Giáo án toán cao cấp C - GV. Nguyễn Đức Phương
Giáo án toán cao cấp A3 - ThS. Đoàn Vương Nguyên
Bài giảng toán cao cấp B1 - TS. Trần Bá Tịnh _ TS. Nguyễn Vũ Tiến
Ngân hàng đề thi toán cao cấp A1 - Học viện Công nghệ Bưu chính Viễn thông
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.