Đang chuẩn bị liên kết để tải về tài liệu:
Burden - Numerical Analysis 5e (PWS, 1993) Episode 2 Part 6

Không đóng trình duyệt đến khi xuất hiện nút TẢI XUỐNG

Tham khảo tài liệu 'burden - numerical analysis 5e (pws, 1993) episode 2 part 6', kỹ thuật - công nghệ, cơ khí - chế tạo máy phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả | 3Ố8 CHAPTER 6 Direct Methods for Solving Linear Systems is a 3 X 3 permutation matrix. For any 3X3 matrix A multiplying on the left by p has the effect of interchanging the second and third rows of A 1 0 0 au 12 13 11 12 13 PA -- 0 0 1 a2ỉ 22 23 31 32 33 _0 1 0_ 31 32 33 _ 21 22 23 _ Pij Similarly multiplying on the right by p interchanges the second and third columns of A. H There are two useful properties of permutation matrices that relate to Gaussian elimination. The first of these is illustrated in the previous example and states that if kn is a permutation of the integers 1 . . . n and the permutation matrix p Pij is defined by 1 if j kị 0 otherwise then PA permutes the rows of A that is Ề 1 fci 2 aki H DA _ ữfc2 1 ứ 2 2 ứlt2 jTzl . r Ề ak l ak - 2 ak i The second result is that if p is a permutation matrix then p1 exists andP-1 Ph At the end of Section 6.4 we saw that for any nonsingular matrix A the linear system Ax b can be solved by Gaussian elimination with the possibility of row interchanges. Hence there is a rearrangement of the equations in the system that permits Gaussian elimination to proceed without row interchanges. This implies that for any nonsingular matrix A a permutation matrix p exists for which the system PAx Pb can be solved without row interchanges. But then the matrix PA can be factored into PA - LU where L is lower triangular and u is upper triangular. Since P 1 pr we have the factorization A PrL ĩ . However unless p Ỉ the matrix pr L is not lower triangular. EXAMPLE 3 Since an 0 the matrix 0 0-1 1 2 3 3 _1 2 1 does not have an LU factorization. However using the row interchange Ef - Ef f followed by 3 - Ej E3 and E4 - Ex Ef produces . ji. 6.5 Matrix Factorization 369 1 1-12 0 0-1 1 0 0 11 0 10 1 Then the row interchange 2 4 followed by 4 3 7 4 gives the matrix 1 1 -1 2 u 0 1 0 1 0 0 1 1 _0 0 0 2_ The permutation matrix associated with the row interchanges 1 - 2 and 2 4 is . - 0 10 0 0 0 0 1 F 0 0 1 0 _1 0 0 0_ Gaussian elimination can

Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.