Đang chuẩn bị liên kết để tải về tài liệu:
Đề thi thử đại học môn toán năm 2012_Đề số 84

Không đóng trình duyệt đến khi xuất hiện nút TẢI XUỐNG

Tham khảo đề thi - kiểm tra đề thi thử đại học môn toán năm 2012_đề số 84 , tài liệu phổ thông, ôn thi đh-cđ phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả | ĐỀ THI THỬ ĐẠI HỌC, CAO ĐẲNG Môn thi : TOÁN ( ĐỀ 84 ) I. PHẦN CHUNG CHO TẤT CẢ THÍ SINH (8 điểm) Câu I: (2đ) Cho hàm số: . 1.Khảo sát sự bthiên và vẽ đồ thị của hàm số ứng với m = 0 2)Tìm m để đồ thị của hsố cắt trục hoành tại 4 điểm pbiệt thỏa : Câu II (3đ): 1) Tìm m để phương trình sau có nghiệm : 2) Giải hpt : .3) Tính tích phân : Câu III ( 1 đ) : Cho hình chóp OABC có 3 cạnh OA , OB , OC vuông góc với nhau đôi một tại O, OB = a, OC = và OA= . Gọi M , N lần lượt là trung điểm của cạnh BC , AC. a)Tính khoảng cách từ điểm B đến mp ( OMN ). b) Tính khoảng cách giữa 2 đường thẳng AB và OM. Câu IV ( 1 đ): Trong không gian với hệ tọa độ Oxyz, cho điểm A ( 3 ; - 1 ; 1 ) , đường thẳng và mp ( P) lần lượt có phương trình : , ( P ) : x – y + z - 5 = 0 . Viết phương trình tham số của đường thẳng d thỏa các điều kiện :đi qua A , nằm trong ( P) và hợp với đường thẳng một góc 450. II. PHẦN RIÊNG CHO THÍ SINH HỌC THEO TỪNG CHƯƠNG TRÌNH ( 2 điểm) A. Chương trình chuẩn: Câu Va. 1)Giải bất phương trình : . 2) Tìm soá thöïc x > 0 trong khai trieån : , bieát soá haïng ñöùng giöõa cuûa khai trieån baèng 16128 B. Chương trình nâng cao: Câu Vb:1) Giải pt : 2) Cho 2 soá thöïc x vaø y > 0 .Tìm giaù trị nhỏ nhất của biể thức : --- -----------------------------------Hết -------------------------------------------------------- ĐÁP ÁN ĐỀ THI THỬ ĐẠI HỌC, CAO ĐẲNG Môn thi : TOÁN ( ĐỀ 84 ) Câu Đáp án Điểm I 1) Khảo sát hàm số với m = 0 : Bạn đọc tự làm 1.00 Cho: y = x4 – (m2 + 10)x2 + 9 (Cm). 1) Khảo sát và vẽ đồ thị hàm số với m= 0. y = x4 – 10x2 + 9 .Đồ thị :.Cho 2) Phương trình hoành độ giao điểm của (Cm) và Ox. (1) Đặt Ptrình trở thành: (2) Ta có đk: => 0 - dt = sinxdx . Ta có : 0.75 IV a)Tính khoảng cách từ điểm B đến mp ( OMN ) 1.00 Chọn hệ trục tọa độ như hình vẽ. Khi đó O(0;0;0), . , là VTPT của mp ( OMN ) Phương trình mặt phẳng (OMN) qua O với vectơ pháp tuyến Ta có: . Vậy: 0.5 b) MN là đường trung bình của tam giác ABC AB // MN AB //(OMN) d(AB;OM) = d(AB;(OMN)) = 0.5 1.00 2) Viết ptts của đt d : Cách 1 : Gọi lần lươt là các vtcp của đt d , đt và vtpt của mp ( P). Đặt . Vì d nằm trong ( P) nên ta có : => a – b + c = 0 b = a + c ( 1 ). Theo gt : góc giữa 2 đt bằng 450 Góc giữa 2 vtcp bằng 450 . Thay (1) vào ( 2) ta có : * Với c = 0 : chọn a = b = 1 . Ta có ptts của d là : x = 3 + t ; y = - 1 – t ; z = 1 * Với c = - 15a / 7 . chọn a = 7 , c = - 15 , b = -8 . ta có ptts của d là : x = 3 + 7 t ; y = - 1 – 8 t ; z = 1 – 15t. 0.25 1.00 Cmr vôùi moïi x , y > 0 , ta coù : Bieán ñoåi veá traùi , ad Bñt Cosi cho 4 soá döông , ta coù : Vaây Pmin = 256 khi x = 3 vaø y = 9

Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.