Đang chuẩn bị liên kết để tải về tài liệu:
Bài giảng Lý thuyết xác suất và thống kê toán: Chương 3 - ĐH Kinh tế TP.HCM

Không đóng trình duyệt đến khi xuất hiện nút TẢI XUỐNG

Mời các bạn tham khảo bài giảng Lý thuyết xác suất và thống kê toán: Chương 3 sau đây để nắm bắt những kiến thức về phân phối nhị thức; phân phối Poisson; phân phối siêu bội; phân phối chuẩn. Với những bài tập minh họa đi kèm bài giảng sẽ giúp các bạn nắm bắt những kiến thức này một cách tốt hơn.   | a- Bài toán tổng quát dẫn đến phân phối nhị thức Chương 3 MỘT SỐ PHÂN PHỐI XÁC SUẤT THÔNG DỤNG I - Phân phối nhị thức ª Tiến hành n phép thử độc lập. ª X là số lần A xảy ra trong n phép thử, thì X là đ.l.n.n rời rạc có thể nhận các giá trị: 0, 1, 2. . . . , n X có phân phối nhị thức với các tham số : n, p. ª P(A) = p đối với mọi phép thử. Đại lượng ngẫu nhiên X có phân phối nhị thức với các tham số n và p được ký hiệu là: X B(n, p). Thí dụ 1: Xác suất để một máy sản xuất được sản phẩm loại I là 0,8. Cho máy sản xuất 5 sản phẩm. Gọi X là số sản phẩm loại I có trong 5 sản phẩm do máy sản xuất thì X B(5; 0,8). Thí dụ 2: Xác suất để một xạ thủ bắn trúng bia trong mỗi lần bắn như nhau và đều bằng 0,9. Xạ thủ này bắn 10 viên. Gọi X là số viên trúng bia của xạ thủ này thì X B(10; 0,9). Thí dụ 3: Có 3 cầu thủ ném bóng vào rổ (mỗi người ném một quả). Xác suất ném trúng rổ của cầu thủ thứ nhất, thứ hai, thứ ba tương ứng là: 0,9; 0,8; 0,6. Gọi X là số lần ném trúng rổ . | a- Bài toán tổng quát dẫn đến phân phối nhị thức Chương 3 MỘT SỐ PHÂN PHỐI XÁC SUẤT THÔNG DỤNG I - Phân phối nhị thức ª Tiến hành n phép thử độc lập. ª X là số lần A xảy ra trong n phép thử, thì X là đ.l.n.n rời rạc có thể nhận các giá trị: 0, 1, 2. . . . , n X có phân phối nhị thức với các tham số : n, p. ª P(A) = p đối với mọi phép thử. Đại lượng ngẫu nhiên X có phân phối nhị thức với các tham số n và p được ký hiệu là: X B(n, p). Thí dụ 1: Xác suất để một máy sản xuất được sản phẩm loại I là 0,8. Cho máy sản xuất 5 sản phẩm. Gọi X là số sản phẩm loại I có trong 5 sản phẩm do máy sản xuất thì X B(5; 0,8). Thí dụ 2: Xác suất để một xạ thủ bắn trúng bia trong mỗi lần bắn như nhau và đều bằng 0,9. Xạ thủ này bắn 10 viên. Gọi X là số viên trúng bia của xạ thủ này thì X B(10; 0,9). Thí dụ 3: Có 3 cầu thủ ném bóng vào rổ (mỗi người ném một quả). Xác suất ném trúng rổ của cầu thủ thứ nhất, thứ hai, thứ ba tương ứng là: 0,9; 0,8; 0,6. Gọi X là số lần ném trúng rổ của 3 cầu thủ này. X có phân phối nhị thức hay không? Khái niệm các phép thử độc lập 1 và 2 là hai phép thử độc lập nếu như xác suất xảy ra một biến cố nào đó của phép thử 1 không phụ thuộc vào kết quả của phép thử 2 và ngược lại. (3.1) b- Công thức tính xác suất Nếu X B(n, p) Thí dụ: X B(5; 0,8) P(x X x+h) = P(X = x) + P(X = x+ 1) + . . . . + P(X = x+h) (3.2) Nếu X B(n, p), thì: Trong đó: P(X = x), P(X = x+1),. . . , P(X = x+h) được tính theo công thức (3.1) Thí dụ: X B(5; 0,8) P(1 X 3) = P(X = 1) + P(X = 2) + P(X = 3) = 0,0064 + 0,0512 + 0,2048 = 0,2624 c- Các tham số đặc trưng: Kỳ vọng toán: Nếu X B(n , p) thì: E(X) = np Phương sai: Nếu X B(n , p) thì: Var(X) = npq Giá trị tin chắc nhất: Nếu X B(n , p) thì: np + p - 1 Mod(X) np + p a- Bài toán tổng quát dẫn đến phân phối Poisson II- Phân phối Poisson X B(n, p) nhưng n lớn, p nhỏ (p X

Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.