Đang chuẩn bị liên kết để tải về tài liệu:
A homotopy for a complex of free Lie algebras

Không đóng trình duyệt đến khi xuất hiện nút TẢI XUỐNG

Using the Guichardet construction, we compute the cohomology groups of a complex of free Lie algebras introduced by Alekseev and Torossian. | Turk J Math 36 (2012) , 59 – 65. ¨ ITAK ˙ c TUB doi:10.3906/mat-1101-76 A homotopy for a complex of free Lie algebras Mich`ele Vergne Abstract Using the Guichardet construction, we compute the cohomology groups of a complex of free Lie algebras introduced by Alekseev and Torossian. 1. Introduction In their study of the relation between the KV-conjecture and Drinfeld’s associators, Alekseev and Torossian [1] studied the Eilenberg-MacLane differential δA : Ln → Ln+1 , where Ln is the free Lie algebra in n variables, and computed the cohomology groups of δA in dimensions 1, 2 . Following the construction of Guichardet [2] (see also [3]), we remark that the complex δA is acyclic, except in dimensions 1, 2 , where the cohomology is of dimension 1 . We also identify the cohomology groups of a similar complex δA : Tn → Tn+1 , where Tn is the free associative algebra in n variables: the cohomology is of dimension 1 in any degree. The Guichardet construction provides an explicit homotopy. Alekseev and Torossian used the computations in dimension 2 to deduce the existence of a solution to the KV problem from the existence of an associator. A simple by-product of their computation is the existence and the uniqueness of the Campbell-Hausdorff formula. We do not have any other application of the computations of higher cohomologies. In this note, we start with a review of the construction of Guichardet. Then we adapt it to free associative algebras and free Lie algebras. I am thankful to the referee for his careful reading. 2. The Guichardet construction Let V be a finite dimensional real vector space. Let F n be the space of polynomial functions f on V ⊕ V ⊕ · · · ⊕ V . An element f of F n is written as f(v1 , v2 , . . . , vn ). Define (δn f)(v1 , . . . , vn+1 ) = n (−1)i f(v1 , v2 , . . . , vi−1 , vˆi , vi+1 , . . . , vn ). i=1 For example: (δ1 f)(v1 , v2 ) = −f(v2 ) + f(v1 ) 59 VERGNE (δ2 f)(v1 , v2 , v3 ) = −f(v2 , v3 ) + f(v1 , v3 ) − f(v1 , v2 ). We define F

Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.