Báo cáo tài liệu vi phạm
Giới thiệu
Kinh doanh - Marketing
Kinh tế quản lý
Biểu mẫu - Văn bản
Tài chính - Ngân hàng
Công nghệ thông tin
Tiếng anh ngoại ngữ
Kĩ thuật công nghệ
Khoa học tự nhiên
Khoa học xã hội
Văn hóa nghệ thuật
Sức khỏe - Y tế
Văn bản luật
Nông Lâm Ngư
Kỹ năng mềm
Luận văn - Báo cáo
Giải trí - Thư giãn
Tài liệu phổ thông
Văn mẫu
THỊ TRƯỜNG NGÀNH HÀNG
NÔNG NGHIỆP, THỰC PHẨM
Gạo
Rau hoa quả
Nông sản khác
Sữa và sản phẩm
Thịt và sản phẩm
Dầu thực vật
Thủy sản
Thức ăn chăn nuôi, vật tư nông nghiệp
CÔNG NGHIỆP
Dệt may
Dược phẩm, Thiết bị y tế
Máy móc, thiết bị, phụ tùng
Nhựa - Hóa chất
Phân bón
Sản phẩm gỗ, Hàng thủ công mỹ nghệ
Sắt, thép
Ô tô và linh kiện
Xăng dầu
DỊCH VỤ
Logistics
Tài chính-Ngân hàng
NGHIÊN CỨU THỊ TRƯỜNG
Hoa Kỳ
Nhật Bản
Trung Quốc
Hàn Quốc
Châu Âu
ASEAN
BẢN TIN
Bản tin Thị trường hàng ngày
Bản tin Thị trường và dự báo tháng
Bản tin Thị trường giá cả vật tư
Tìm
Danh mục
Kinh doanh - Marketing
Kinh tế quản lý
Biểu mẫu - Văn bản
Tài chính - Ngân hàng
Công nghệ thông tin
Tiếng anh ngoại ngữ
Kĩ thuật công nghệ
Khoa học tự nhiên
Khoa học xã hội
Văn hóa nghệ thuật
Y tế sức khỏe
Văn bản luật
Nông lâm ngư
Kĩ năng mềm
Luận văn - Báo cáo
Giải trí - Thư giãn
Tài liệu phổ thông
Văn mẫu
NGÀNH HÀNG
NÔNG NGHIỆP, THỰC PHẨM
Gạo
Rau hoa quả
Nông sản khác
Sữa và sản phẩm
Thịt và sản phẩm
Dầu thực vật
Thủy sản
Thức ăn chăn nuôi, vật tư nông nghiệp
CÔNG NGHIỆP
Dệt may
Dược phẩm, Thiết bị y tế
Máy móc, thiết bị, phụ tùng
Nhựa - Hóa chất
Phân bón
Sản phẩm gỗ, Hàng thủ công mỹ nghệ
Sắt, thép
Ô tô và linh kiện
Xăng dầu
DỊCH VỤ
Logistics
Tài chính-Ngân hàng
NGHIÊN CỨU THỊ TRƯỜNG
Hoa Kỳ
Nhật Bản
Trung Quốc
Hàn Quốc
Châu Âu
ASEAN
BẢN TIN
Bản tin Thị trường hàng ngày
Bản tin Thị trường và dự báo tháng
Bản tin Thị trường giá cả vật tư
Thông tin
Tài liệu Xanh là gì
Điều khoản sử dụng
Chính sách bảo mật
0
Trang chủ
Khoa Học Tự Nhiên
Toán học
Bài giảng Giải tích hàm nhiều biến: Chương 2 - Nguyễn Thị Xuân Anh
Đang chuẩn bị liên kết để tải về tài liệu:
Bài giảng Giải tích hàm nhiều biến: Chương 2 - Nguyễn Thị Xuân Anh
Phương Yến
203
166
pdf
Không đóng trình duyệt đến khi xuất hiện nút TẢI XUỐNG
Tải xuống
Bài giảng "Giải tích hàm nhiều biến - Chương 2: Tích phân bội" cung cấp cho người học các kiến thức: Một số mặt bậc hai thường gặp, tích phân kép, tích phân bội ba. nội dung chi tiết. | Bài giảng Giải tích hàm nhiều biến: Chương 2 - Nguyễn Thị Xuân Anh CHƯƠNG II: TÍCH PHÂN BỘI §0: MỘT SỐ MẶT BẬC HAI THƯỜNG GẶP §1: TÍCH PHÂN KÉP I. Định nghĩa và Cách tính II. Đổi biến trong tích phân kép III. Ứng dụng hình học của tích phân kép §2: TÍCH PHÂN BỘI BA I. Định nghĩa và Cách tính II. Đổi biến trong tích phân bội ba III. Ứng dụng hình học của tích phân bội ba CuuDuongThanCong.com https://fb.com/tailieudientucntt §0. Một số mặt bậc hai thường gặp I. Mặt Ellipsoid: x 2 y 2 z2 1. Phương trình: 2 2 2 1 a b c 2. Cách gọi tên mặt: Với phương trình trên, ta cho x = 0, y = 0, z = 0 ta đều nhận được giao tuyến của mặt với 3 mặt tọa độ làcác đường Ellipse. Tức là nếu cả 3 giao tuyến của mặt S với 3 mặt tọa độ hoặc các mặt song song với các mặt tọa độ đều là ellipse thì ta sẽ gọi mặt S là mặt Ellipsoid 3. Cách vẽ hình Vẽ 3 giao tuyến của S với 3 mặt tọa độ CuuDuongThanCong.com https://fb.com/tailieudientucntt §0. Một số mặt bậc hai thường gặp x2 y2 Vẽ đường 2 2 1 trên mặt phẳng nằm ellipse a b ngang z = 0 CuuDuongThanCong.com https://fb.com/tailieudientucntt §0. Một số mặt bậc hai thường gặp y2 z2 trên mặt phẳng Vẽ thêm đường ellipse 1 b2 c2 x=0 CuuDuongThanCong.com https://fb.com/tailieudientucntt §0. Một số mặt bậc hai thường gặp 2 2 2 Vẽ mặt ellipsoid x y z 2 2 1 2 a b CuuDuongThanCong.com c https://fb.com/tailieudientucntt §0. Một số mặt bậc hai thường gặp x2+z2=1, y=0 y2+z2=1,x=0 x2+y2=1,z=0 x2 z2 Có thể vẽ thêm đường ellipse 2 2 1 a c trên mặt phẳng y = 0 CuuDuongThanCong.com https://fb.com/tailieudientucntt §0. Một số mặt bậc hai thường gặp II. Mặt Paraboloid Elliptic: x2 y2 1. Phương trình : z a2 b2 2. Cách gọi tên mặt: Với phương trình trên, ta cho x = 0, y = 0 thì được 2 giao tuyến với 2 mặt tọa độ là 2 đường Parabol và cho z=c, c>0 ta được đường còn lại là 1 đường Ellipse. Tức là nếu 2 trong 3 giao tuyến với các mặt tọa độ hoặc các mặt song
TÀI LIỆU LIÊN QUAN
Bài giảng Giải tích hàm nhiều biến: Chương 2 - TS. Đặng Văn Vinh (P2)
Bài giảng Giải tích hàm nhiều biến: Chương 2(tt) - Trường ĐH Bách Khoa TP. Hồ Chí Minh
Bài giảng Giải tích hàm nhiều biến: Chương 2(tt) - Trường ĐH Bách Khoa TP. Hồ Chí Minh
Bài giảng Giải tích hàm nhiều biến: Chương 2 - Nguyễn Thị Xuân Anh
Bài giảng Giải tích hàm nhiều biến: Chương 2 - TS. Đặng Văn Vinh
Bài giảng Giải tích hàm nhiều biến – Chương 1: Đạo hàm và vi phân
Bài giảng Giải tích hàm nhiều biến: Chương 1 - Nguyễn Thị Xuân Anh
Bài giảng Giải tích hàm nhiều biến: Chương 2 - TS. Đặng Văn Vinh (P1)
Bài giảng Giải tích hàm nhiều biến: Chương 2 - Trường ĐH Bách Khoa TP. Hồ Chí Minh
Bài giảng Giải tích hàm nhiều biến: Chương 2 - Trường ĐH Bách Khoa TP. Hồ Chí Minh
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.