Báo cáo tài liệu vi phạm
Giới thiệu
Kinh doanh - Marketing
Kinh tế quản lý
Biểu mẫu - Văn bản
Tài chính - Ngân hàng
Công nghệ thông tin
Tiếng anh ngoại ngữ
Kĩ thuật công nghệ
Khoa học tự nhiên
Khoa học xã hội
Văn hóa nghệ thuật
Sức khỏe - Y tế
Văn bản luật
Nông Lâm Ngư
Kỹ năng mềm
Luận văn - Báo cáo
Giải trí - Thư giãn
Tài liệu phổ thông
Văn mẫu
THỊ TRƯỜNG NGÀNH HÀNG
NÔNG NGHIỆP, THỰC PHẨM
Gạo
Rau hoa quả
Nông sản khác
Sữa và sản phẩm
Thịt và sản phẩm
Dầu thực vật
Thủy sản
Thức ăn chăn nuôi, vật tư nông nghiệp
CÔNG NGHIỆP
Dệt may
Dược phẩm, Thiết bị y tế
Máy móc, thiết bị, phụ tùng
Nhựa - Hóa chất
Phân bón
Sản phẩm gỗ, Hàng thủ công mỹ nghệ
Sắt, thép
Ô tô và linh kiện
Xăng dầu
DỊCH VỤ
Logistics
Tài chính-Ngân hàng
NGHIÊN CỨU THỊ TRƯỜNG
Hoa Kỳ
Nhật Bản
Trung Quốc
Hàn Quốc
Châu Âu
ASEAN
BẢN TIN
Bản tin Thị trường hàng ngày
Bản tin Thị trường và dự báo tháng
Bản tin Thị trường giá cả vật tư
Tìm
Danh mục
Kinh doanh - Marketing
Kinh tế quản lý
Biểu mẫu - Văn bản
Tài chính - Ngân hàng
Công nghệ thông tin
Tiếng anh ngoại ngữ
Kĩ thuật công nghệ
Khoa học tự nhiên
Khoa học xã hội
Văn hóa nghệ thuật
Y tế sức khỏe
Văn bản luật
Nông lâm ngư
Kĩ năng mềm
Luận văn - Báo cáo
Giải trí - Thư giãn
Tài liệu phổ thông
Văn mẫu
NGÀNH HÀNG
NÔNG NGHIỆP, THỰC PHẨM
Gạo
Rau hoa quả
Nông sản khác
Sữa và sản phẩm
Thịt và sản phẩm
Dầu thực vật
Thủy sản
Thức ăn chăn nuôi, vật tư nông nghiệp
CÔNG NGHIỆP
Dệt may
Dược phẩm, Thiết bị y tế
Máy móc, thiết bị, phụ tùng
Nhựa - Hóa chất
Phân bón
Sản phẩm gỗ, Hàng thủ công mỹ nghệ
Sắt, thép
Ô tô và linh kiện
Xăng dầu
DỊCH VỤ
Logistics
Tài chính-Ngân hàng
NGHIÊN CỨU THỊ TRƯỜNG
Hoa Kỳ
Nhật Bản
Trung Quốc
Hàn Quốc
Châu Âu
ASEAN
BẢN TIN
Bản tin Thị trường hàng ngày
Bản tin Thị trường và dự báo tháng
Bản tin Thị trường giá cả vật tư
Thông tin
Tài liệu Xanh là gì
Điều khoản sử dụng
Chính sách bảo mật
0
Trang chủ
Luận Văn - Báo Cáo
Thạc sĩ - Tiến sĩ - Cao học
Luận văn Thạc sĩ Toán học: Định lí điểm bất động trong không gian b-metric với wt-khoảng cách
Đang chuẩn bị liên kết để tải về tài liệu:
Luận văn Thạc sĩ Toán học: Định lí điểm bất động trong không gian b-metric với wt-khoảng cách
Yến Anh
69
36
pdf
Không đóng trình duyệt đến khi xuất hiện nút TẢI XUỐNG
Tải xuống
Định lí điểm bất động Banach (hay nguyên lí co Banach) đã được Banach chứng minh vào năm 1922. Từ đó đã có nhiều người tổng quát hóa kết quả này theo nhiều hướng khác nhau. Năm 1989, Bakhtin [2] đã giới thiệu khái niệm không gian b metric và chứng minh Định lí điểm bất động đối với ánh xạ co trong không gian b metric, là tổng quát hóa của nguyên lí co Banach trong không gian metric. | ĐẠI HỌC THÁI NGUYÊN TRƢỜNG ĐẠI HỌC SƢ PHẠM SENGDAO SOULIYAVONG ĐỊNH LÍ ĐIỂM BẤT ĐỘNG TRONG KHÔNG GIAN b METRIC VỚI t KHOẢNG CÁCH Ngành TOÁN GIẢI TÍCH Mã số 8.46.01.02 LUẬN VĂN THẠC SĨ TOÁN HỌC Ngƣời hƣớng dẫn khoa học PGS.TS Phạm Hiến Bằng THÁI NGUYÊN-2019 LỜI CAM ĐOAN Tôi xin cam đoan đây là công trình nghiên cứu của riêng tôi dưới sự hướng dẫn của PGS.TS Phạm Hiến Bằng. Các tài liệu trong luận văn là trung thực. Các kết quả chính của luận văn chưa từng được công bố trong các luận văn Thạc sĩ của các tác giả khác. Tôi xin cam đoan rằng mọi sự giúp đỡ cho việc thực hiện Luận văn này đã được cảm ơn và các thông tin trích dẫn trong Luận văn đã được chỉ rõ nguồn gốc. Tác giả Sengdao SOULIYAVONG i LỜI CẢM ƠN Bản luận văn được hoàn thành tại Trường Đại học Sư phạm - Đại học Thái Nguyên dưới sự hướng dẫn của PGS.TS Phạm Hiến Bằng. Nhân dịp này tôi xin cám ơn Thầy về sự hướng dẫn hiệu quả cùng những kinh nghiệm trong quá trình học tập nghiên cứu và hoàn thành luận văn. Xin chân thành cảm ơn Phòng Đào tạo- Bộ phận Sau Đại học Ban chủ nhiệm Khoa Toán các thầy cô giáo Trường Đại học Sư phạm - Đại học Thái Nguyên Viện Toán học và Trường Đại học Sư phạm Hà Nội đã giảng dạy và tạo điều kiện thuận lợi cho tôi trong quá trình học tập và nghiên cứu khoa học. Bản luận văn chắc chắn sẽ không tránh khỏi những khiếm khuyết vì vậy rất mong nhận được sự đóng góp ý kiến của các thầy cô giáo và các bạn học viên để luận văn này được hoàn chỉnh hơn. Cuối cùng xin cảm ơn gia đình và bạn bè đã động viên khích lệ tôi trong thời gian học tập nghiên cứu và hoàn thành luận văn. Tháng 4 năm 2019 Tác giả Sengdao SOULIYAVONG ii MỤC LỤC LỜI CAM ĐOAN . i LỜI CẢM ƠN . ii MỤC LỤC . iii MỞ ĐẦU . 1 Chƣơng 1 KHÔNG GIAN b METRIC . 3 1.1. Không gian b metric . 3 1.2 Định lí Banach trong không gian b- metric . . .5 Chƣơng 2 ĐỊNH LÍ ĐIỂM BẤT ĐỘNG TRONG KHÔNG GIAN b METRIC VỚI t KHOẢNG CÁCH . 8 2.1. khoảng cách và t khoảng cách trong không gian b metric . 8 2.2. Một số định lí điểm bất động trong không gian b
TÀI LIỆU LIÊN QUAN
Luận văn Thạc sĩ Toán học: Định lí điểm bất động đối với ánh xạ giãn trong không gian G-Metric
Luận văn Thạc sĩ Toán học: Một số định lí điểm bất động trong không gian nón Metric
Luận văn Thạc sĩ Toán học: Định lí điểm bất động trong không gian b-metric với wt-khoảng cách
Luận văn Thạc sĩ Toán học: Định lí không điểm tổ hợp và một vài vận dụng
Luận văn Thạc sĩ Toán học: Định lí điểm bất động trên không gian kiểu Metric
Luận văn Thạc sĩ Toán học: Định lí điểm bất động trong không gian G-metric đầy đủ
Luận văn Thạc sĩ Toán học: Định lí điểm bất động đối với ánh xạ co cyclic trong không gian G-metric và ứng dụng
Luận văn Thạc sĩ Toán học: Một số định lí về điểm bất động trong không gian metric riêng và ứng dụng
Luận văn Thạc sĩ Toán học: Định lí điểm bất động trong không gian b metric với t khoảng cách
Luận văn Thạc sĩ Toán học: Các phương pháp nghiên cứu định lí Krasnoselskii về điểm bất động trong nón
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.