Báo cáo tài liệu vi phạm
Giới thiệu
Kinh doanh - Marketing
Kinh tế quản lý
Biểu mẫu - Văn bản
Tài chính - Ngân hàng
Công nghệ thông tin
Tiếng anh ngoại ngữ
Kĩ thuật công nghệ
Khoa học tự nhiên
Khoa học xã hội
Văn hóa nghệ thuật
Sức khỏe - Y tế
Văn bản luật
Nông Lâm Ngư
Kỹ năng mềm
Luận văn - Báo cáo
Giải trí - Thư giãn
Tài liệu phổ thông
Văn mẫu
THỊ TRƯỜNG NGÀNH HÀNG
NÔNG NGHIỆP, THỰC PHẨM
Gạo
Rau hoa quả
Nông sản khác
Sữa và sản phẩm
Thịt và sản phẩm
Dầu thực vật
Thủy sản
Thức ăn chăn nuôi, vật tư nông nghiệp
CÔNG NGHIỆP
Dệt may
Dược phẩm, Thiết bị y tế
Máy móc, thiết bị, phụ tùng
Nhựa - Hóa chất
Phân bón
Sản phẩm gỗ, Hàng thủ công mỹ nghệ
Sắt, thép
Ô tô và linh kiện
Xăng dầu
DỊCH VỤ
Logistics
Tài chính-Ngân hàng
NGHIÊN CỨU THỊ TRƯỜNG
Hoa Kỳ
Nhật Bản
Trung Quốc
Hàn Quốc
Châu Âu
ASEAN
BẢN TIN
Bản tin Thị trường hàng ngày
Bản tin Thị trường và dự báo tháng
Bản tin Thị trường giá cả vật tư
Tìm
Danh mục
Kinh doanh - Marketing
Kinh tế quản lý
Biểu mẫu - Văn bản
Tài chính - Ngân hàng
Công nghệ thông tin
Tiếng anh ngoại ngữ
Kĩ thuật công nghệ
Khoa học tự nhiên
Khoa học xã hội
Văn hóa nghệ thuật
Y tế sức khỏe
Văn bản luật
Nông lâm ngư
Kĩ năng mềm
Luận văn - Báo cáo
Giải trí - Thư giãn
Tài liệu phổ thông
Văn mẫu
NGÀNH HÀNG
NÔNG NGHIỆP, THỰC PHẨM
Gạo
Rau hoa quả
Nông sản khác
Sữa và sản phẩm
Thịt và sản phẩm
Dầu thực vật
Thủy sản
Thức ăn chăn nuôi, vật tư nông nghiệp
CÔNG NGHIỆP
Dệt may
Dược phẩm, Thiết bị y tế
Máy móc, thiết bị, phụ tùng
Nhựa - Hóa chất
Phân bón
Sản phẩm gỗ, Hàng thủ công mỹ nghệ
Sắt, thép
Ô tô và linh kiện
Xăng dầu
DỊCH VỤ
Logistics
Tài chính-Ngân hàng
NGHIÊN CỨU THỊ TRƯỜNG
Hoa Kỳ
Nhật Bản
Trung Quốc
Hàn Quốc
Châu Âu
ASEAN
BẢN TIN
Bản tin Thị trường hàng ngày
Bản tin Thị trường và dự báo tháng
Bản tin Thị trường giá cả vật tư
Thông tin
Tài liệu Xanh là gì
Điều khoản sử dụng
Chính sách bảo mật
0
Trang chủ
Khoa Học Tự Nhiên
Toán học
Chứng minh định lí Gauss-Bonnet địa phương
Đang chuẩn bị liên kết để tải về tài liệu:
Chứng minh định lí Gauss-Bonnet địa phương
Hồng Linh
375
9
pdf
Không đóng trình duyệt đến khi xuất hiện nút TẢI XUỐNG
Tải xuống
Đề tài này trình bày một chứng minh đầy đủ và ngắn gọn cho định lí Gauss-Bonnet, một định lí đặc sắc của Hình học vi phân, nêu lên mối liên hệ giữa tính hình học vi phân và tính tôpô, tuy nhiên, kết quả này lại bị bỏ qua trong Chương trình mới dành cho sinh viên Khoa Toán-Tin, cũng như học viên cao học. Chứng minh dựa hoàn toàn vào định lí Stokes. Mời các bạn cùng tham khảo! | HNUE JOURNAL OF SCIENCE DOI 10.18173 2354-1059.2021-0001 Natural Sciences 2021 Volume 66 Issue 1 pp. 3-11 This paper is available online at http stdb.hnue.edu.vn CHỨNG MINH ĐỊNH LÍ GAUSS-BONNET ĐỊA PHƯƠNG Trần Đức Anh Khoa Toán - Tin Trường Đại học Sư phạm Hà Nội Tóm tắt. Chúng tôi trình bày một chứng minh đầy đủ và ngắn gọn cho định lí Gauss-Bonnet một định lí đặc sắc của Hình học vi phân nêu lên mối liên hệ giữa tính hình học vi phân và tính tôpô tuy nhiên kết quả này lại bị bỏ qua trong Chương trình mới dành cho sinh viên Khoa Toán-Tin cũng như học viên cao học. Chứng minh dựa hoàn toàn vào định lí Stokes. Từ khóa Gauss-Bonnet độ cong Gauss độ cong trắc địa hình học vi phân dạng liên kết định lí Stokes. 1. Mở đầu Định lí Gauss-Bonnet là một kết quả đặc sắc của hình học vi phân cổ điển nêu lên mối liên hệ giữa tính hình học vi phân của mặt khả vi hay đa tạp hai chiều với đặc trưng tôpô của nó. Do tính chất quan trọng của định lí mà hầu như khóa học Hình học vi phân nào trên thế giới cũng sẽ đề cập tới định lí này. Trước đây khoa Toán-Tin Trường Đại học Sư phạm Hà Nội sử dụng giáo trình 1 của tác giả Đoàn Quỳnh trong đó nội dung định lí Gauss-Bonnet được đề cập tới. Hiện nay do chương trình đào tạo thay đổi kể từ Khóa 64 năm 2014 nhiều môn học phải thay đổi lại thời lượng kiến thức nên một số mục trở thành kiến thức tự đọc hoặc bỏ qua trong đó có định lí Gauss-Bonnet. Giáo trình 2 ra đời nhằm phục vụ nhu cầu mới đó. Mặc dù giáo trình mới 2 trình bày cơ bản vẫn theo tinh thần của 1 với nhiều diễn giải gọn gàng và dễ hiểu hơn cho sinh viên tuy nhiên định lí Gauss-Bonnet vẫn là khó tiếp cận với đại trà sinh viên và ngay cả học viên cao học cũng gặp khó khăn khi đọc chứng minh. Điều đó cũng ảnh hưởng một phần tới việc tiếp thu toán học ở trình độ cao hơn đối với nhiều học viên cao học. Trong bài viết này chúng tôi sẽ viết lại đầy đủ chứng minh định lí Gauss-Bonnet phiên bản địa phương cũng là phiên bản quan trọng nhất vì phiên bản toàn cục chỉ là hệ quả đồng thời .
TÀI LIỆU LIÊN QUAN
Áp dụng định lí Rolle trong chứng minh bất đẳng thức đa thức
Bài giảng Toán 7 bài 11 sách Kết nối tri thức: Định lí và chứng minh định lí
Bài giảng Hình học 7 chương 1 bài 7: Định lí
Giáo án Hình học 7 chương 1 bài 7: Định lí
Chứng minh rằng: Ca ngợi tình yêu chân chính của con người cũng chính là khẳng định con người – Anh chị hãy viết một bài văn chứng minh nhận định trên qua đoạn trích “Tình yêu và thù hận” của Uy-li-am sếch-xpia?
Bài giảng Lý luận dạy học môn Toán 1: Dạy học định lí - Tăng Minh Dũng
Định lí điểm bất động cho dạng phi φ- co yếu suy rộng trong không gian kiểu mêtric
Các yếu tố ảnh hưởng đến sự hài lòng của người dân về chất lượng dịch vụ cấp giấy chứng minh nhân dân tại tỉnh Sóc Trăng
Chuyên đề: Một số cách chứng minh định lí Pytago
Giải bài tập Luyện tập định lý SGK Hình học 7 tập 1
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.