Báo cáo tài liệu vi phạm
Giới thiệu
Kinh doanh - Marketing
Kinh tế quản lý
Biểu mẫu - Văn bản
Tài chính - Ngân hàng
Công nghệ thông tin
Tiếng anh ngoại ngữ
Kĩ thuật công nghệ
Khoa học tự nhiên
Khoa học xã hội
Văn hóa nghệ thuật
Sức khỏe - Y tế
Văn bản luật
Nông Lâm Ngư
Kỹ năng mềm
Luận văn - Báo cáo
Giải trí - Thư giãn
Tài liệu phổ thông
Văn mẫu
THỊ TRƯỜNG NGÀNH HÀNG
NÔNG NGHIỆP, THỰC PHẨM
Gạo
Rau hoa quả
Nông sản khác
Sữa và sản phẩm
Thịt và sản phẩm
Dầu thực vật
Thủy sản
Thức ăn chăn nuôi, vật tư nông nghiệp
CÔNG NGHIỆP
Dệt may
Dược phẩm, Thiết bị y tế
Máy móc, thiết bị, phụ tùng
Nhựa - Hóa chất
Phân bón
Sản phẩm gỗ, Hàng thủ công mỹ nghệ
Sắt, thép
Ô tô và linh kiện
Xăng dầu
DỊCH VỤ
Logistics
Tài chính-Ngân hàng
NGHIÊN CỨU THỊ TRƯỜNG
Hoa Kỳ
Nhật Bản
Trung Quốc
Hàn Quốc
Châu Âu
ASEAN
BẢN TIN
Bản tin Thị trường hàng ngày
Bản tin Thị trường và dự báo tháng
Bản tin Thị trường giá cả vật tư
Tìm
Danh mục
Kinh doanh - Marketing
Kinh tế quản lý
Biểu mẫu - Văn bản
Tài chính - Ngân hàng
Công nghệ thông tin
Tiếng anh ngoại ngữ
Kĩ thuật công nghệ
Khoa học tự nhiên
Khoa học xã hội
Văn hóa nghệ thuật
Y tế sức khỏe
Văn bản luật
Nông lâm ngư
Kĩ năng mềm
Luận văn - Báo cáo
Giải trí - Thư giãn
Tài liệu phổ thông
Văn mẫu
NGÀNH HÀNG
NÔNG NGHIỆP, THỰC PHẨM
Gạo
Rau hoa quả
Nông sản khác
Sữa và sản phẩm
Thịt và sản phẩm
Dầu thực vật
Thủy sản
Thức ăn chăn nuôi, vật tư nông nghiệp
CÔNG NGHIỆP
Dệt may
Dược phẩm, Thiết bị y tế
Máy móc, thiết bị, phụ tùng
Nhựa - Hóa chất
Phân bón
Sản phẩm gỗ, Hàng thủ công mỹ nghệ
Sắt, thép
Ô tô và linh kiện
Xăng dầu
DỊCH VỤ
Logistics
Tài chính-Ngân hàng
NGHIÊN CỨU THỊ TRƯỜNG
Hoa Kỳ
Nhật Bản
Trung Quốc
Hàn Quốc
Châu Âu
ASEAN
BẢN TIN
Bản tin Thị trường hàng ngày
Bản tin Thị trường và dự báo tháng
Bản tin Thị trường giá cả vật tư
Thông tin
Tài liệu Xanh là gì
Điều khoản sử dụng
Chính sách bảo mật
0
Trang chủ
Khoa Học Tự Nhiên
Toán học
Đề thi Olympic sinh viên thế giới năm 1995
Đang chuẩn bị liên kết để tải về tài liệu:
Đề thi Olympic sinh viên thế giới năm 1995
Nguyệt Lan
72
11
pdf
Không đóng trình duyệt đến khi xuất hiện nút TẢI XUỐNG
Tải xuống
" Đề thi Olympic sinh viên thế giới năm 1995 " . Đây là một sân chơi lớn để sinh viên thế giới có dịp gặp gỡ, trao đổi, giao lưu và thể hiện khả năng học toán, làm toán của mình. Từ đó đến nay, các kỳ thi Olympic sinh viênthế giới đã liên tục được mở rộng quy mô rất lớn. Kỳ thi này là một sự kiện quan. | International Competition in Mathematics for Universtiy Students in Plovdiv Bulgaria 1995 1 PROBLEMS AND SOLUTIONS First day Problem 1. 10 points Let X be a nonsingular matrix with columns X1 X2 . Xn. Let Y be a matrix with columns X2 X3 . Xn 0. Show that the matrices A YX-1 and B X-1Y have rank n 1 and have only 0 s for eigenvalues. Solution. Let J aij be the n x n matrix where ay 1 if i j 1 and aij 0 otherwise. The rank of J is n 1 and its only eigenvalues are 00s. Moreover Y XJ and A YX-1 XJX-1 B X-1 Y J. It follows that both A and B have rank n 1 with only 00s for eigenvalues. Problem 2. 15 points Let f be a continuous function on 0 1 such that for every x 2 0 1 we have f t dt - . Show that f 2 t dt -. Jx 2 Jo 3 Solution. From the inequality 1 1 1 1 0 f x x 2 dx f 2 x dx 2 xf x dx x2dx J0 Jo Jo Jo we get r1 1 1 1 1 f2 x dx 2 xf x dx x2dx 2 xf x dx --. Jo Jo Jo Jo 3 From the hypotheses we have J J f t dtdx J . This completes the proof. 3 x dx or tf t dt 2o Problem 3. 15 points Let f be twice continuously differentiable on 0 1 such that lim f0 x 1 and lim f00 x 1. Show that X 0 X 0 . f x lim o f 0 x 0. x 2 Solution. Since f0 tends to 1 and f tends to 1 as x tends to 0 there exists an interval 0 r such that f 0 x 0 and f00 x 0 for all x 2 0 r . Hence f is decreasing and f0 is increasing on 0 r . By the mean value theorem for every 0 x x0 r we obtain f x - f xo f0 x - xo 0 for some 2 x x0 . Taking into account that f0 is increasing f0 x f0 0 we get f 0 z X _ f x - f x0 x x0 f0 x x x0 f0 x 0 Taking limits as x tends to 0 we obtain r f x f x -20 lim inf lim sup f0 x . .0. f0 x Since this happens for all x0 2 0 r we deduce that lim fh 0. x.0 f 0 x 0 lim f x . exists and f 0 x Problem 4. 15 points Let F 1 1 R be the function defined by i x2 dt F L nW Show that F is one-to-one i.e. injective and find the range i.e. set of values of F . Solution. From the definition we have x1 F0 x ---- x 1 . ln x Therefore F0 x 0 for x 2 1 1 . Thus F is strictly increasing and hence .
TÀI LIỆU LIÊN QUAN
Đề thi Olympic sinh viên thế giới năm 1994
Đề thi Olympic sinh viên thế giới năm 1995
Đề thi Olympic sinh viên thế giới năm 1996
Đề thi Olympic sinh viên thế giới năm 1997 ngày 1
Đề thi Olympic sinh viên thế giới năm 1997 ngày 2
Đề thi Olympic sinh viên thế giới năm 1998
Đề thi Olympic sinh viên thế giới năm 1999
Đề thi Olympic sinh viên thế giới năm 2000
Đề thi Olympic sinh viên thế giới năm 2001
Đề thi Olympic sinh viên thế giới năm 2002 ngày 1
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.