Báo cáo tài liệu vi phạm
Giới thiệu
Kinh doanh - Marketing
Kinh tế quản lý
Biểu mẫu - Văn bản
Tài chính - Ngân hàng
Công nghệ thông tin
Tiếng anh ngoại ngữ
Kĩ thuật công nghệ
Khoa học tự nhiên
Khoa học xã hội
Văn hóa nghệ thuật
Sức khỏe - Y tế
Văn bản luật
Nông Lâm Ngư
Kỹ năng mềm
Luận văn - Báo cáo
Giải trí - Thư giãn
Tài liệu phổ thông
Văn mẫu
THỊ TRƯỜNG NGÀNH HÀNG
NÔNG NGHIỆP, THỰC PHẨM
Gạo
Rau hoa quả
Nông sản khác
Sữa và sản phẩm
Thịt và sản phẩm
Dầu thực vật
Thủy sản
Thức ăn chăn nuôi, vật tư nông nghiệp
CÔNG NGHIỆP
Dệt may
Dược phẩm, Thiết bị y tế
Máy móc, thiết bị, phụ tùng
Nhựa - Hóa chất
Phân bón
Sản phẩm gỗ, Hàng thủ công mỹ nghệ
Sắt, thép
Ô tô và linh kiện
Xăng dầu
DỊCH VỤ
Logistics
Tài chính-Ngân hàng
NGHIÊN CỨU THỊ TRƯỜNG
Hoa Kỳ
Nhật Bản
Trung Quốc
Hàn Quốc
Châu Âu
ASEAN
BẢN TIN
Bản tin Thị trường hàng ngày
Bản tin Thị trường và dự báo tháng
Bản tin Thị trường giá cả vật tư
Tìm
Danh mục
Kinh doanh - Marketing
Kinh tế quản lý
Biểu mẫu - Văn bản
Tài chính - Ngân hàng
Công nghệ thông tin
Tiếng anh ngoại ngữ
Kĩ thuật công nghệ
Khoa học tự nhiên
Khoa học xã hội
Văn hóa nghệ thuật
Y tế sức khỏe
Văn bản luật
Nông lâm ngư
Kĩ năng mềm
Luận văn - Báo cáo
Giải trí - Thư giãn
Tài liệu phổ thông
Văn mẫu
NGÀNH HÀNG
NÔNG NGHIỆP, THỰC PHẨM
Gạo
Rau hoa quả
Nông sản khác
Sữa và sản phẩm
Thịt và sản phẩm
Dầu thực vật
Thủy sản
Thức ăn chăn nuôi, vật tư nông nghiệp
CÔNG NGHIỆP
Dệt may
Dược phẩm, Thiết bị y tế
Máy móc, thiết bị, phụ tùng
Nhựa - Hóa chất
Phân bón
Sản phẩm gỗ, Hàng thủ công mỹ nghệ
Sắt, thép
Ô tô và linh kiện
Xăng dầu
DỊCH VỤ
Logistics
Tài chính-Ngân hàng
NGHIÊN CỨU THỊ TRƯỜNG
Hoa Kỳ
Nhật Bản
Trung Quốc
Hàn Quốc
Châu Âu
ASEAN
BẢN TIN
Bản tin Thị trường hàng ngày
Bản tin Thị trường và dự báo tháng
Bản tin Thị trường giá cả vật tư
Thông tin
Tài liệu Xanh là gì
Điều khoản sử dụng
Chính sách bảo mật
0
Trang chủ
Khoa Học Tự Nhiên
Toán học
Đề thi Olympic sinh viên thế giới năm 1998
Đang chuẩn bị liên kết để tải về tài liệu:
Đề thi Olympic sinh viên thế giới năm 1998
Thanh Lâm
81
7
pdf
Không đóng trình duyệt đến khi xuất hiện nút TẢI XUỐNG
Tải xuống
" Đề thi Olympic sinh viên thế giới năm 1998 " . Đây là một sân chơi lớn để sinh viên thế giới có dịp gặp gỡ, trao đổi, giao lưu và thể hiện khả năng học toán, làm toán của mình. Từ đó đến nay, các kỳ thi Olympic sinh viênthế giới đã liên tục được mở rộng quy mô rất lớn. Kỳ thi này là một sự kiện quan. | 5th INTERNATIONAL MATHEMATICS COMPETITION FOR UNIVERSITY STUDENTS July 29 - August 3 1998 Blagoevgrad Bulgaria First day PROBLEMS AND SOLUTIONS Problem 1. 20 points Let V be a 10-dimensional real vector space and Ui and U2 two linear subspaces such that Ui C U2 dimR U1 3 and dimR U2 6. Let E be the set of all linear maps T V V which have Ui and U2 as invariant subspaces i.e. T U1 C U1 and T U2 C U2 . Calculate the dimension of E as a real vector space. Solution First choose a basis 1 v2 3 of U1. It is possible to extend this basis with vectors v4 v5 and 6 to get a basis of U2. In the same way we can extend a basis of U2 with vectors v7 . 10 to get as basis of V. Let T 2 E be an endomorphism which has U1 and U2 as invariant subspaces. Then its matrix relative to the basis v1 . v10 is of the form 0 0 0 . 000 000 000000 000000 000000 000000 So dimRE 9 18 40 67. Problem 2. Prove that the following proposition holds for n 3 5 points and n 5 7 points and does not hold for n 4 8 points . For any permutation 1 of 1 2 . . n different from the identity there is a permutation fl2 such that any permutation fl can be obtained from fl1 and fl2 using only compositions for example fl fl1 O fl-1 o 2 o fl-1 . Solution Let Sn be the group of permutations of 1 2 . n . 1 When n 3 the proposition is obvious if x 12 we choose y 123 if x 123 we choose y 12 . 2 n 4. Let x 12 34 . Assume that there exists y 2 Sn such that S4 x y . Denote by K the invariant subgroup K id 12 34 13 24 14 23 . By the fact that x and y generate the whole group S4 it follows that the factor group S4 K contains only powers of y yK i.e. S4 K is cyclic. It is easy to see that this factor-group is not comutative something more this group is not isomorphic to S3 . 3 n 5 a If x 12 then for y we can take y 12345 . b If x 123 we set y 124 35 . Then y3xy3 125 and y4 124 . Therefore 123 124 125 2 x y - the subgroup generated by x and y. From the fact that 123 124 125 generate the alternating subgroup A 5 it follows that A
TÀI LIỆU LIÊN QUAN
Đề thi Olympic sinh viên thế giới năm 1994
Đề thi Olympic sinh viên thế giới năm 1995
Đề thi Olympic sinh viên thế giới năm 1996
Đề thi Olympic sinh viên thế giới năm 1997 ngày 1
Đề thi Olympic sinh viên thế giới năm 1997 ngày 2
Đề thi Olympic sinh viên thế giới năm 1998
Đề thi Olympic sinh viên thế giới năm 1999
Đề thi Olympic sinh viên thế giới năm 2000
Đề thi Olympic sinh viên thế giới năm 2001
Đề thi Olympic sinh viên thế giới năm 2002 ngày 1
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.