Báo cáo tài liệu vi phạm
Giới thiệu
Kinh doanh - Marketing
Kinh tế quản lý
Biểu mẫu - Văn bản
Tài chính - Ngân hàng
Công nghệ thông tin
Tiếng anh ngoại ngữ
Kĩ thuật công nghệ
Khoa học tự nhiên
Khoa học xã hội
Văn hóa nghệ thuật
Sức khỏe - Y tế
Văn bản luật
Nông Lâm Ngư
Kỹ năng mềm
Luận văn - Báo cáo
Giải trí - Thư giãn
Tài liệu phổ thông
Văn mẫu
THỊ TRƯỜNG NGÀNH HÀNG
NÔNG NGHIỆP, THỰC PHẨM
Gạo
Rau hoa quả
Nông sản khác
Sữa và sản phẩm
Thịt và sản phẩm
Dầu thực vật
Thủy sản
Thức ăn chăn nuôi, vật tư nông nghiệp
CÔNG NGHIỆP
Dệt may
Dược phẩm, Thiết bị y tế
Máy móc, thiết bị, phụ tùng
Nhựa - Hóa chất
Phân bón
Sản phẩm gỗ, Hàng thủ công mỹ nghệ
Sắt, thép
Ô tô và linh kiện
Xăng dầu
DỊCH VỤ
Logistics
Tài chính-Ngân hàng
NGHIÊN CỨU THỊ TRƯỜNG
Hoa Kỳ
Nhật Bản
Trung Quốc
Hàn Quốc
Châu Âu
ASEAN
BẢN TIN
Bản tin Thị trường hàng ngày
Bản tin Thị trường và dự báo tháng
Bản tin Thị trường giá cả vật tư
Tìm
Danh mục
Kinh doanh - Marketing
Kinh tế quản lý
Biểu mẫu - Văn bản
Tài chính - Ngân hàng
Công nghệ thông tin
Tiếng anh ngoại ngữ
Kĩ thuật công nghệ
Khoa học tự nhiên
Khoa học xã hội
Văn hóa nghệ thuật
Y tế sức khỏe
Văn bản luật
Nông lâm ngư
Kĩ năng mềm
Luận văn - Báo cáo
Giải trí - Thư giãn
Tài liệu phổ thông
Văn mẫu
NGÀNH HÀNG
NÔNG NGHIỆP, THỰC PHẨM
Gạo
Rau hoa quả
Nông sản khác
Sữa và sản phẩm
Thịt và sản phẩm
Dầu thực vật
Thủy sản
Thức ăn chăn nuôi, vật tư nông nghiệp
CÔNG NGHIỆP
Dệt may
Dược phẩm, Thiết bị y tế
Máy móc, thiết bị, phụ tùng
Nhựa - Hóa chất
Phân bón
Sản phẩm gỗ, Hàng thủ công mỹ nghệ
Sắt, thép
Ô tô và linh kiện
Xăng dầu
DỊCH VỤ
Logistics
Tài chính-Ngân hàng
NGHIÊN CỨU THỊ TRƯỜNG
Hoa Kỳ
Nhật Bản
Trung Quốc
Hàn Quốc
Châu Âu
ASEAN
BẢN TIN
Bản tin Thị trường hàng ngày
Bản tin Thị trường và dự báo tháng
Bản tin Thị trường giá cả vật tư
Thông tin
Tài liệu Xanh là gì
Điều khoản sử dụng
Chính sách bảo mật
0
Trang chủ
Khoa Học Tự Nhiên
Toán học
Đề thi Olympic sinh viên thế giới năm 2001
Đang chuẩn bị liên kết để tải về tài liệu:
Đề thi Olympic sinh viên thế giới năm 2001
Ngọc Vy
62
9
pdf
Không đóng trình duyệt đến khi xuất hiện nút TẢI XUỐNG
Tải xuống
" Đề thi Olympic sinh viên thế giới năm 2001 " . Đây là một sân chơi lớn để sinh viên thế giới có dịp gặp gỡ, trao đổi, giao lưu và thể hiện khả năng học toán, làm toán của mình. Từ đó đến nay, các kỳ thi Olympic sinh viênthế giới đã liên tục được mở rộng quy mô rất lớn. Kỳ thi này là một sự kiện quan trọng đối với phong trào học toán của sinh viên thế giới trong trường đại. | 8th IMC 2001 July 19 - July 25 Prague Czech Republic First day Problem 1. Let n be a positive integer. Consider an n x n matrix with entries 1 2 . n2 written in order starting top left and moving along each row in turn left-to-right. We choose n entries of the matrix such that exactly one entry is chosen in each row and each column. What are the possible values of the sum of the selected entries Solution. Since there are exactly n rows and n columns the choice is of the form . j J 1 . ng where a 2 Sn is a permutation. Thus the corresponding sum is equal to n n n n 2 n j_ 1 a j 12 nj_ 12n E a j j i j i j i j i . nn n 1 2 n n2 1 n2 3 n _ j n 1 7 2 7 - n2 ---------- - j 1 j 1 j 1 which shows that the sum is independent of a. Problem 2. Let r s t be positive integers which are pairwise relatively prime. If a and b are elements of a commutative multiplicative group with unity element e and ar bs ab 7 e prove that a b e. Does the same conclusion hold if a and b are elements of an arbitrary non-commutative group Solution. 1. There exist integers u and v such that us vt 1. Since ab ba we obtain v i i xus vt i US I iXt i xUS i xUS us i s u us us ab ab ab ab I ab e ab aus bs aus e aus. Therefore br ebr arbr ab r ausr ar us e. Since xr ys 1 for suitable integers x and y b bxr ys br x bs y e. It follows similarly that a e as well. 2. This is not true. Let a 123 and b 34567 be cycles of the permutation group S7 of order 7. Then ab 1234567 and a3 b5 ab 7 e. 1 Problem 3. Find lim 1 t 5 t y n 1 proaches 1 from below. tn 1 tn where t 1 means that t ap- 1 8th IMC 2001 July 19 - July 25 Prague Czech Republic Second day Problem 1. Let r s 1 be integers and o 1 r-i bo bi b -i be real nonnegative numbers such that o ix 2x2 r_ ixr 1 xr bo bix b jx2 bs ixs 2 xs 1 x x2 x xr s Prove that each j and each bj equals either 0 or 1. Solution. Multiply the left hand side polynomials. We obtain the following equalities obo 1 obi ibo 1 Among them one can find equations o ibs i 2bs 2 1 and bo bi r i
TÀI LIỆU LIÊN QUAN
Đề thi Olympic sinh viên thế giới năm 1994
Đề thi Olympic sinh viên thế giới năm 1995
Đề thi Olympic sinh viên thế giới năm 1996
Đề thi Olympic sinh viên thế giới năm 1997 ngày 1
Đề thi Olympic sinh viên thế giới năm 1997 ngày 2
Đề thi Olympic sinh viên thế giới năm 1998
Đề thi Olympic sinh viên thế giới năm 1999
Đề thi Olympic sinh viên thế giới năm 2000
Đề thi Olympic sinh viên thế giới năm 2001
Đề thi Olympic sinh viên thế giới năm 2002 ngày 1
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.