Báo cáo tài liệu vi phạm
Giới thiệu
Kinh doanh - Marketing
Kinh tế quản lý
Biểu mẫu - Văn bản
Tài chính - Ngân hàng
Công nghệ thông tin
Tiếng anh ngoại ngữ
Kĩ thuật công nghệ
Khoa học tự nhiên
Khoa học xã hội
Văn hóa nghệ thuật
Sức khỏe - Y tế
Văn bản luật
Nông Lâm Ngư
Kỹ năng mềm
Luận văn - Báo cáo
Giải trí - Thư giãn
Tài liệu phổ thông
Văn mẫu
THỊ TRƯỜNG NGÀNH HÀNG
NÔNG NGHIỆP, THỰC PHẨM
Gạo
Rau hoa quả
Nông sản khác
Sữa và sản phẩm
Thịt và sản phẩm
Dầu thực vật
Thủy sản
Thức ăn chăn nuôi, vật tư nông nghiệp
CÔNG NGHIỆP
Dệt may
Dược phẩm, Thiết bị y tế
Máy móc, thiết bị, phụ tùng
Nhựa - Hóa chất
Phân bón
Sản phẩm gỗ, Hàng thủ công mỹ nghệ
Sắt, thép
Ô tô và linh kiện
Xăng dầu
DỊCH VỤ
Logistics
Tài chính-Ngân hàng
NGHIÊN CỨU THỊ TRƯỜNG
Hoa Kỳ
Nhật Bản
Trung Quốc
Hàn Quốc
Châu Âu
ASEAN
BẢN TIN
Bản tin Thị trường hàng ngày
Bản tin Thị trường và dự báo tháng
Bản tin Thị trường giá cả vật tư
Tìm
Danh mục
Kinh doanh - Marketing
Kinh tế quản lý
Biểu mẫu - Văn bản
Tài chính - Ngân hàng
Công nghệ thông tin
Tiếng anh ngoại ngữ
Kĩ thuật công nghệ
Khoa học tự nhiên
Khoa học xã hội
Văn hóa nghệ thuật
Y tế sức khỏe
Văn bản luật
Nông lâm ngư
Kĩ năng mềm
Luận văn - Báo cáo
Giải trí - Thư giãn
Tài liệu phổ thông
Văn mẫu
NGÀNH HÀNG
NÔNG NGHIỆP, THỰC PHẨM
Gạo
Rau hoa quả
Nông sản khác
Sữa và sản phẩm
Thịt và sản phẩm
Dầu thực vật
Thủy sản
Thức ăn chăn nuôi, vật tư nông nghiệp
CÔNG NGHIỆP
Dệt may
Dược phẩm, Thiết bị y tế
Máy móc, thiết bị, phụ tùng
Nhựa - Hóa chất
Phân bón
Sản phẩm gỗ, Hàng thủ công mỹ nghệ
Sắt, thép
Ô tô và linh kiện
Xăng dầu
DỊCH VỤ
Logistics
Tài chính-Ngân hàng
NGHIÊN CỨU THỊ TRƯỜNG
Hoa Kỳ
Nhật Bản
Trung Quốc
Hàn Quốc
Châu Âu
ASEAN
BẢN TIN
Bản tin Thị trường hàng ngày
Bản tin Thị trường và dự báo tháng
Bản tin Thị trường giá cả vật tư
Thông tin
Tài liệu Xanh là gì
Điều khoản sử dụng
Chính sách bảo mật
0
Trang chủ
Khoa Học Tự Nhiên
Toán học
Giáo trình hướng dẫn các ứng dụng của hình học phẳng trong dạng lượng giác của số phức p1
Đang chuẩn bị liên kết để tải về tài liệu:
Giáo trình hướng dẫn các ứng dụng của hình học phẳng trong dạng lượng giác của số phức p1
Hải Quân
110
5
pdf
Không đóng trình duyệt đến khi xuất hiện nút TẢI XUỐNG
Tải xuống
Kí hiệu ∀ = 3 ì 3 = { (x, y) : x, y ∈ 3 }. Trên tập ∀ định nghĩa phép toán cộng v phép toán nhân nh− sau ∀ (x, y), (x’, y’) ∈ ∀ (x, y) + (x’, y’) = (x + x’, y + y’) (1.1.1) (x, y) ì (x’, y’) = (xx’ - yy’, xy’ + x’y) Ví dụ (2, 1) + (-1, 1) = (1, 2) v (2, 1) ì (-1, 1) = (-3, 1) Định lý (∀, +, ì ) l một tr−ờng số. Chứng minh Kiểm tra trực tiếp các công. | Giáo trình hướng dẫn các ứng dụng của hình học phẳng trong dạng lượng giác của số phức Đ1. Trường số phức Kí hiệu V 3 X 3 x y x y e 3 . Trên tập V định nghĩa phép toán cộng và phép toán nhân như sau V x y x y e V x y x y x x y y x y X x y xx - yy xy x y 1.1.1 Ví du 2 1 -1 1 1 2 và 2 1 X -1 1 -3 1 Đinh lý V X là một trường số. Chứng minh Kiểm tra trực tiếp các công thức 1.1.1 Phép toán cộng có tính giao hoán tính kết hợp có phần tử không là 0 0 V x y e V x y 0 0 x y Mọi phần tử có phần tử đối là - x y -x -y V x y e V x y -x -y 0 0 Phép toán nhân có tính giao hoán tính kết hợp có phần tử đơn vị là 1 0 V x y e V x y X 1 0 x y -1 z x -y X Mọi phần tử khác không có phần tử nghịch đảo là x y - x2 y2 x2 y2 V x y V - 0 0 x y X Q-ỵ y 3- 7 1 0 x2 y2 x2 y2 Ngoài ra phép nhân là phân phối với phép cộng Trường V X gọi là trường số phức mỗi phần tử của V gọi là một số phức. Theo định nghĩa trên mỗi số phức là một cặp hai số thực với các phép toán thực hiện theo công thức 1.1.1 . Trên trường số phức phép trừ phép chia và phép luỹ thừa định nghĩa như sau. V n z z e z X V X V với V V - 0 0 z - z z - z z X z -1 và z0 1 z1 z và zn zn-1 X z 1.1.2 z Bằng cách đổng nhất số thực x với số phức x 0 Giáo Trình Toán Chuyên Đề Trang 5 ương 1. Sô Phức x x 0 1 1 0 và 0 0 0 tập số thực trở thành tập con của tập số phức. Phép cộng và phép nhân các số phức hạn chế lên tập số thực trở thành phép cộng và phép nhân các số thực quen thuộc. x x x 0 x 0 x x 0 x x . Ngoài ra trong tập số phức còn có các số không phải là số thực. Kí hiệu i 0 1 gọi là đơn vị ảo. Ta có i2 0 1 X 0 1 -1 0 -1 Suy ra phuơng trình x2 1 0 có nghiệm phức là x V-ĩ Ể 3. Nhu vậy truờng số thực 3 X là một truờng con thực sự của truờng số phức V X . Đ2. Dạng đại số của số phức Với mọi số phức z x y phân tích x y x 0 0 y x 1 0 y 0 1 Đổng nhất đơn vị thực 1 0 1 và đơn vị ảo 0 1 i ta có z x iy 1.2.1 Dạng viết 1.2.1 gọi là dạng đại sô của số phức. Số thực x Rez gọi là phần thực số thực y Imz gọi là phần ảo và số phức z x - iy gọi là liên .
TÀI LIỆU LIÊN QUAN
Giáo trình hướng dẫn phân tích các ứng dụng của hình học phẳng trong dạng đa phân giác p1
Giáo trình hướng dẫn phân tích các ứng dụng của hình học phẳng trong dạng đa phân giác p2
Giáo trình hướng dẫn phân tích các ứng dụng của hình học phẳng trong dạng đa phân giác p3
Giáo trình hướng dẫn phân tích các ứng dụng của hình học phẳng trong dạng đa phân giác p4
Giáo trình hướng dẫn phân tích các ứng dụng của hình học phẳng trong dạng đa phân giác p5
Giáo trình hướng dẫn phân tích các ứng dụng của hình học phẳng trong dạng đa phân giác p6
Giáo trình hướng dẫn phân tích các ứng dụng của hình học phẳng trong dạng đa phân giác p7
Giáo trình hướng dẫn phân tích các ứng dụng của hình học phẳng trong dạng đa phân giác p8
Giáo trình hướng dẫn phân tích các ứng dụng của hình học phẳng trong dạng đa phân giác p9
Giáo trình hướng dẫn phân tích các ứng dụng của hình học phẳng trong dạng đa phân giác p10
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.