Báo cáo tài liệu vi phạm
Giới thiệu
Kinh doanh - Marketing
Kinh tế quản lý
Biểu mẫu - Văn bản
Tài chính - Ngân hàng
Công nghệ thông tin
Tiếng anh ngoại ngữ
Kĩ thuật công nghệ
Khoa học tự nhiên
Khoa học xã hội
Văn hóa nghệ thuật
Sức khỏe - Y tế
Văn bản luật
Nông Lâm Ngư
Kỹ năng mềm
Luận văn - Báo cáo
Giải trí - Thư giãn
Tài liệu phổ thông
Văn mẫu
THỊ TRƯỜNG NGÀNH HÀNG
NÔNG NGHIỆP, THỰC PHẨM
Gạo
Rau hoa quả
Nông sản khác
Sữa và sản phẩm
Thịt và sản phẩm
Dầu thực vật
Thủy sản
Thức ăn chăn nuôi, vật tư nông nghiệp
CÔNG NGHIỆP
Dệt may
Dược phẩm, Thiết bị y tế
Máy móc, thiết bị, phụ tùng
Nhựa - Hóa chất
Phân bón
Sản phẩm gỗ, Hàng thủ công mỹ nghệ
Sắt, thép
Ô tô và linh kiện
Xăng dầu
DỊCH VỤ
Logistics
Tài chính-Ngân hàng
NGHIÊN CỨU THỊ TRƯỜNG
Hoa Kỳ
Nhật Bản
Trung Quốc
Hàn Quốc
Châu Âu
ASEAN
BẢN TIN
Bản tin Thị trường hàng ngày
Bản tin Thị trường và dự báo tháng
Bản tin Thị trường giá cả vật tư
Tìm
Danh mục
Kinh doanh - Marketing
Kinh tế quản lý
Biểu mẫu - Văn bản
Tài chính - Ngân hàng
Công nghệ thông tin
Tiếng anh ngoại ngữ
Kĩ thuật công nghệ
Khoa học tự nhiên
Khoa học xã hội
Văn hóa nghệ thuật
Y tế sức khỏe
Văn bản luật
Nông lâm ngư
Kĩ năng mềm
Luận văn - Báo cáo
Giải trí - Thư giãn
Tài liệu phổ thông
Văn mẫu
NGÀNH HÀNG
NÔNG NGHIỆP, THỰC PHẨM
Gạo
Rau hoa quả
Nông sản khác
Sữa và sản phẩm
Thịt và sản phẩm
Dầu thực vật
Thủy sản
Thức ăn chăn nuôi, vật tư nông nghiệp
CÔNG NGHIỆP
Dệt may
Dược phẩm, Thiết bị y tế
Máy móc, thiết bị, phụ tùng
Nhựa - Hóa chất
Phân bón
Sản phẩm gỗ, Hàng thủ công mỹ nghệ
Sắt, thép
Ô tô và linh kiện
Xăng dầu
DỊCH VỤ
Logistics
Tài chính-Ngân hàng
NGHIÊN CỨU THỊ TRƯỜNG
Hoa Kỳ
Nhật Bản
Trung Quốc
Hàn Quốc
Châu Âu
ASEAN
BẢN TIN
Bản tin Thị trường hàng ngày
Bản tin Thị trường và dự báo tháng
Bản tin Thị trường giá cả vật tư
Thông tin
Tài liệu Xanh là gì
Điều khoản sử dụng
Chính sách bảo mật
0
Trang chủ
Khoa Học Tự Nhiên
Toán học
LÝ THUYẾT XÁC SUẤT PHẦN 2 - TRẦN DIÊN HIỂN - 1
Đang chuẩn bị liên kết để tải về tài liệu:
LÝ THUYẾT XÁC SUẤT PHẦN 2 - TRẦN DIÊN HIỂN - 1
Diệu Hương
99
9
pdf
Không đóng trình duyệt đến khi xuất hiện nút TẢI XUỐNG
Tải xuống
KIỂM ĐỊNH GIẢ THIẾT THỐNG KÊ I. THÔNG TIN CƠ BẢN Giả sử biến ngẫu nhiên X có hàm phân phối F(x, θ), trong đó θ là tham số. Những giả thiết đặt ra đối với tham số θ của F(x, θ) ta gọi là giả thiết thống kê, thường kí hiệu là H. Những giả thiết đặt ra đối với tham số θ của F(x, θ) nhưng khác với H ta gọi là đối thiết, thường kí hiệu là K. Tham số θ ở đây có thể là giá trị trung bình, phương sai của biến ngẫu nhiên hoặc xác. | Simpo PDF Merge and Split Unregistered Version - http www.simpopdf.com NHẬP MÔN LÍ THUYẾT XÁC Suất VÀ THỐNG KÊ TOÁN TIỂU CHỦ ĐỀ 3.8. KIỂM ĐỊNH GIẢ THIẾT THỐNG KÊ I. THÔNG TIN CƠ BẢN Giả sử biến ngẫu nhiên X có hàm phân phối F x 0 trong đó 0 là tham số. Những giả thiết đặt ra đối với tham số 0 của F x 0 ta gọi là giả thiết thống kê thường kí hiệu là H. Những giả thiết đặt ra đối với tham số 0 của F x 0 nhưng khác với H ta gọi là đối thiết thường kí hiệu là K. Tham số 0 ở đây có thể là giá trị trung bình phương sai của biến ngẫu nhiên hoặc xác suất p của biến cố A trong quan sát . Trong phần này ta giải quyết các bài toán - So sánh số trung bình của mẫu quan sát với số trung bình theo lí thuyết độ sai lệch là đáng kể hay không - So sánh tần suất của biến cố A trong mẫu quan sát với xác suất của biến cố A theo lí thuyết độ sai lệch là đáng kể hay không - So sánh hai số trung bình trên hai mẫu quan sát để rút ra hai số trung bình theo lí thuyết sai lệch là đáng kể hay không - So sánh hai tần suất của biến cố A trong hai mẫu quan sát để rút ra hai xác suất của biến cố A theo lí thuyết sai lệch có đáng kể hay không Để giải quyết các bài toán nêu trên thông tin duy nhất ta có là các số liệu quan sát trên tập mẫu. Vận dụng công cụ của lí thuyết xác suất ta sẽ tìm được miền T sao cho nếu mẫu X1 . Xn e T thì ta bác bỏ giả thiết H ngược lại ta chấp nhận H cho đến khi có thông tin mới. Miền T nói trên ta gọi là miền tiêu chuẩn. Khi bác bỏ hay chấp nhận giải thiết H ta có thể mắc phải hai loại sai lầm dưới đây - Sai lầm loại I Ta bác bỏ giả thiết H trong khi H đúng - Sai lầm loại II Ta chấp nhận giả thiết H trong khi H sai. Ta cố gắng hạn chế tới mức tối thiểu cả hai loại sai lầm này. Nhưng khi kích thước mẫu cố định thì điều này khó khả thi. Do vậy người ta thường cho phép được mắc sai lầm loại I với xác suất a thường gọi là mức ý nghĩa a hay độ tin cậy 1 - a . Sau đó hạn chế đến mức tối thiểu việc mắc sai lầm loại II. 88 Simpo PDF Merge and Split Unregistered Version - http .
TÀI LIỆU LIÊN QUAN
Bài giảng Lý thuyết xác suất và thống kê toán học: Chương 2 - Phan Văn Tân
Bài giảng Lý thuyết xác suất - Chương 2: Đại lượng ngẫu nhiên và quy luật phân phối xác suất
Bài giảng Lý thuyết xác suất và thống kê toán: Chương 2 - Đại học Kinh tế Quốc dân
Bài giảng Lý thuyết xác suất thống kê toán - Chương 2: Đại lượng ngẫu nhiên, phân phối xác suất
Bài giảng Lý thuyết xác suất thống kê toán - Chương 2: Đại lượng ngẫu nhiên, phân phối xác suất
Bài giảng Lý thuyết xác suất và thống kê toán: Phần 2 - Cao Tấn Bình
Bài giảng Lý thuyết xác suất và thống kê toán: Phần 2 - Trường Đại học Duy Tân
Bài giảng Lý thuyết xác suất và thống kê toán - Chương 2: Biến ngẫu nhiên
Bài giảng Lý thuyết xác suất thông kê: Chương 2 - TS. Nguyễn Thị Tuyết Mai
Giáo trình Lý thuyết xác suất và thống kê toán: Phần 2 - NXB Kinh tế
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.