Đang chuẩn bị liên kết để tải về tài liệu:
Bài giảng Kinh tế lượng - Chương 4: Mô hình hồi qui bội (25 tr)

Không đóng trình duyệt đến khi xuất hiện nút TẢI XUỐNG

Bài giảng giới thiệu về mô hình hồi quy bội, các giả thiết mô hình, ước lượng các tham số, hệ số xác định, ma trận tương quan, ma trận hiệp phương sai, khoảng tin cậy của các hệ số hồi qui, kiểm định giả thiết,. nội dung chi tiết. | Chương 4 Mô hình hồi qui bội Mô hình : Mô hình hồi qui tuyến tính k biến (PRF) : E(Y/X2i, ,Xki) = 1+ 2X2i + + kXki Yi = 1+ 2X2i + + kXki + Ui Trong đó : Y - biến phụ thuộc X2, ,Xk - các biến độc lập 1 là hệ số tự do (hay hệ số chặn) j ( j=2, ,k) là các hệ số hồi qui riêng, cho biết khi Xj tăng 1 đvị thì trung bình của Y sẽ thay đổi j đvị trong trường hợp các biến độc lập khác không đổi . Khi k = 3 thì ta có mô hình hồi qui tuyến tính ba biến : E(Y/X2, X3) = 1+ 2X2i + 3X3i (PRF) Yi = 1+ 2X2i + 3X3i + Ui 2. Các giả thiết của mô hình Giả thiết 1: Các biến độc lập phi ngẫu nhiên, giá trị được xác định trước. Giả thiết 2 : E(Ui/Xi) = 0 i Giả thiết 3 : Var(Ui/Xi) = 2 i Giả thiết 4 : Cov(Ui, Uj) = 0 i j Giả thiết 5 : Cov(Xi, Ui) = 0 i Giả thiết 6 : Ui ~ N (0, 2) i Giả thiết 7 : Không có hiện tượng cộng tuyến giữa các biến độc lập. 3. Ước lượng các tham số a. Mô hình hồi qui ba biến : Yi = 1+ 2X2i + 3X3i + Ui (PRF) Hàm hồi qui mẫu : Giả sử có một mẫu gồm n quan sát . | Chương 4 Mô hình hồi qui bội Mô hình : Mô hình hồi qui tuyến tính k biến (PRF) : E(Y/X2i, ,Xki) = 1+ 2X2i + + kXki Yi = 1+ 2X2i + + kXki + Ui Trong đó : Y - biến phụ thuộc X2, ,Xk - các biến độc lập 1 là hệ số tự do (hay hệ số chặn) j ( j=2, ,k) là các hệ số hồi qui riêng, cho biết khi Xj tăng 1 đvị thì trung bình của Y sẽ thay đổi j đvị trong trường hợp các biến độc lập khác không đổi . Khi k = 3 thì ta có mô hình hồi qui tuyến tính ba biến : E(Y/X2, X3) = 1+ 2X2i + 3X3i (PRF) Yi = 1+ 2X2i + 3X3i + Ui 2. Các giả thiết của mô hình Giả thiết 1: Các biến độc lập phi ngẫu nhiên, giá trị được xác định trước. Giả thiết 2 : E(Ui/Xi) = 0 i Giả thiết 3 : Var(Ui/Xi) = 2 i Giả thiết 4 : Cov(Ui, Uj) = 0 i j Giả thiết 5 : Cov(Xi, Ui) = 0 i Giả thiết 6 : Ui ~ N (0, 2) i Giả thiết 7 : Không có hiện tượng cộng tuyến giữa các biến độc lập. 3. Ước lượng các tham số a. Mô hình hồi qui ba biến : Yi = 1+ 2X2i + 3X3i + Ui (PRF) Hàm hồi qui mẫu : Giả sử có một mẫu gồm n quan sát các giá trị (Yi, X2i, X3i). Theo phương pháp OLS, (j= 1,2,3) phải thoả mãn : Tức là : Do Giải hệ ta có : * Phương sai của các hệ số ước lượng Trong đó : 2 = Var(Ui) 2 chưa biết nên dùng ước lượng của nó là : Với : b. Mô hình hồi qui tuyến tính k biến Yi = 1+ 2X2i + + kXki+ Ui (PRF) Hàm hồi qui mẫu : Theo phương pháp OLS, (j= 1,2, ,k) phải thoả mãn : Tức là : Viết hệ dưới dạng ma trận : 4. Hệ số xác định * Chú ý : Khi tăng số biến độc lập trong mô hình thì R2 cũng tăng cho dù các biến độc lập tăng thêm có ảnh hưởng mô hình hay không . Do đó không thể dùng R2 để quyết định có nên thêm biến vào mô hình hay không mà thay vào đó có thể sử dụng hệ số xác định hiệu chỉnh : Hay: Tính chất của : Khi k > 1, . có thể âm, trong trường hợp âm, ta coi giá trị của nó bằng 0. Biến độc lập đưa vào MH phải thỏa đồng thời 2 điều kiện: Biến ĐL đưa vào MH làm hệ số xác định hiệu chỉnh tăng .Hệ số hồi qui của biến đưa vào khác không có ý nghĩa 5. Ma trận tương quan Xét mô hình : Gọi rtj là hệ số tương .

Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.