Đang chuẩn bị liên kết để tải về tài liệu:
Nhận dạng hình ảnh tự nhiên sử dụng mô hình mạng Neuron tích chập

Không đóng trình duyệt đến khi xuất hiện nút TẢI XUỐNG

Bài viết trình bày một kiến trúc kết hợp giữa CNN và MLP để khai thác ưu điểm của hai kiến trúc này trong việc nhận dạng hình ảnh tự nhiên. Vai trò của các khối chức năng trong mạng sẽ được phân tích và đánh giá thông qua tỉ lệ nhận dạng. | ISSN 1859-1531 - TẠP CHÍ KHOA HỌC VÀ CÔNG NGHỆ ĐẠI HỌC ĐÀ NẴNG, SỐ 5(126).2018, Quyển 1 105 NHẬN DẠNG HÌNH ẢNH TỰ NHIÊN SỬ DỤNG MÔ HÌNH MẠNG NEURON TÍCH CHẬP NATURAL IMAGE RECOGNITION BASED ON CONVOLUTIONAL NEURAL NETWORK Vương Quang Phước1, Hồ Phước Tiến2 Trường Đại học Khoa học - Đại học Huế; vqphuoc@husc.edu.vn 2 Trường Đại học Bách khoa - Đại học Đà Nẵng; hptien@dut.udn.vn 1 Tóm tắt - Gần đây, kỹ thuật Deep Learning đã tạo ra những bước tiến lớn trong việc giải quyết các bài toán về thị giác máy tính. Bằng cách sử dụng kiến trúc mạng neuron mới – mạng neuron tích chập (Convolutional Neural Network - CNN) –, ta có thể khắc phục được những trở ngại của mạng neuron truyền thống, tức dạng Perceptron đa lớp (Multilayer Perceptrons - MLP), và từ đó giúp việc huấn luyện mạng neuron hiệu quả hơn. Tuy nhiên, kiến trúc MLP cũng có những ưu điểm đối với việc xử lý cục bộ trong miền không gian. Bài báo trình bày một kiến trúc kết hợp giữa CNN và MLP để khai thác ưu điểm của hai kiến trúc này trong việc nhận dạng hình ảnh tự nhiên. Vai trò của các khối chức năng trong mạng sẽ được phân tích và đánh giá thông qua tỉ lệ nhận dạng. Việc đánh giá được thực hiện với bộ dữ liệu ảnh tự nhiên CIFAR-10. Quá trình thực nghiệm đã cho thấy những kết quả hứa hẹn về tỉ lệ nhận dạng, cũng như thể hiện được ưu điểm của kiến trúc kết hợp CNN và MLP. Abstract - Recently, Deep Learning has brought about interesting improvements in solving computer vision problems. By using a new specific architecture, i.e. Convolutional Neural Network (CNN), which has more advantages than the traditional one - known as Multilayer Perceptrons (MLP) -, we can improve performance of the training process. Yet, the MLP architecture is also useful for localized processing in the spatial domain. This paper considers an architecture combining both CNN and MLP to exploit their advantages for the problem of natural image recognition. The functional blocks in the network are analyzed and evaluated using recognition

Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.