Đang chuẩn bị liên kết để tải về tài liệu:
Bài giảng Toán cao cấp: Chương 4 - Hoàng Mạng Dũng

Không đóng trình duyệt đến khi xuất hiện nút TẢI XUỐNG

Bài giảng "Toán cao cấp - Chương 4: Hệ phương trình tuyến tính" cung cấp cho người học các kiến thức: Khái niệm về hệ phương trình tuyến tính, định lý tồn tại nghiệm, phương pháp Cramer, phương pháp ma trận nghịch đảo, . Mời các bạn cùng tham khảo. | Bài giảng Toán cao cấp Chương 4 - Hoàng Mạng Dũng CHƢƠNG 4 HỆ PHƢƠNG TRÌNH TUYẾN TÍNH CHƢƠNG 4 HỆ PHƢƠNG TRÌNH TUYẾN TÍNH Khi khảo sát các mô hình tuyến tính thường dẫn đến giải các hệ Một phương pháp khác để giải hệ phương trình tuyến tính là sử dụng phương trình tuyến tính định thức của Cramer. Thoạt tiên ta có thể thấy rằng hình như vấn đề giải hệ phương trình Đối với mô hình phi tuyến người ta giải quyết bằng cách xấp xỉ tuyến tính đã cũ rồi và có thể giải quyết bằng những phương tiện tính tuyến tính. Vì vậy hệ phương trình tuyến tính có rất nhiều ứng toán sơ cấp quen biết. dụng trong thực tế Tuy nhiên trong thực tế thường cần khảo sát khoảng từ 150 đến 200 Hệ phương trình tuyến tính đã được biết đến rất sớm phương trình đồng thời với số ẩn tương ứng. Tình trạng ấy trong thực hành đã gây ra nhiều khó khăn lớn đến nổi hầu như không thể giải Ở Trung Quốc người ta tìm thấy một cuốn sách có khoảng từ quyết nổi nếu chỉ dùng phương pháp sơ cấp năm 500 trước công nguyên trong đó có những chỉ dẫn về việc dùng một bàn tính để giải các hệ phương trình tuyến tính qua các Mùa hè năm 1949 Giáo sư Wassily Leontief trường Đại học HarVard ví dụ cụ thể đã gửi đến Trung tâm tính toán của trường Đại học Mark II đề nghị giải hệ phương trình tuyến tính gồm 500 phương trình với 500 ẩn biểu diễn Phương pháp giải này chính là thuật toán khử Gauss các chỉ tiêu kinh tế của Mỹ. Mark II là một trong những trung tâm máy Ở châu Âu thuật toán này đã được mô tả trong công trình của tính điện tử lớn nhất thời bấy giờ cũng không giải quyết được. Leontief Buteo Pháp năm 1550 trước Gauss hơn hai thế kỷ buộc phải đưa bài toán về hệ 45 phương trình với 45 ẩn. Với kết quả này Leontief nhận được giải Nobel kinh tế năm 1973 10 07 2017 1 10 07 2017 2 CHƢƠNG 4 HỆ PHƢƠNG TRÌNH TUYẾN TÍNH CHƢƠNG 4 HỆ PHƢƠNG TRÌNH TUYẾN TÍNH 4.1 KHÁI NIỆM VỀ HỆ PHƢƠNG TRÌNH TUYẾN TÍNH 4.1.1 Dạng tổng quát của hệ phƣơng trình tuyến tính Hệ m phương trình tuyến tính n ẩn có dạng tổng quát Trong không gian xét hệ truc tọa .

Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.