Báo cáo tài liệu vi phạm
Giới thiệu
Kinh doanh - Marketing
Kinh tế quản lý
Biểu mẫu - Văn bản
Tài chính - Ngân hàng
Công nghệ thông tin
Tiếng anh ngoại ngữ
Kĩ thuật công nghệ
Khoa học tự nhiên
Khoa học xã hội
Văn hóa nghệ thuật
Sức khỏe - Y tế
Văn bản luật
Nông Lâm Ngư
Kỹ năng mềm
Luận văn - Báo cáo
Giải trí - Thư giãn
Tài liệu phổ thông
Văn mẫu
THỊ TRƯỜNG NGÀNH HÀNG
NÔNG NGHIỆP, THỰC PHẨM
Gạo
Rau hoa quả
Nông sản khác
Sữa và sản phẩm
Thịt và sản phẩm
Dầu thực vật
Thủy sản
Thức ăn chăn nuôi, vật tư nông nghiệp
CÔNG NGHIỆP
Dệt may
Dược phẩm, Thiết bị y tế
Máy móc, thiết bị, phụ tùng
Nhựa - Hóa chất
Phân bón
Sản phẩm gỗ, Hàng thủ công mỹ nghệ
Sắt, thép
Ô tô và linh kiện
Xăng dầu
DỊCH VỤ
Logistics
Tài chính-Ngân hàng
NGHIÊN CỨU THỊ TRƯỜNG
Hoa Kỳ
Nhật Bản
Trung Quốc
Hàn Quốc
Châu Âu
ASEAN
BẢN TIN
Bản tin Thị trường hàng ngày
Bản tin Thị trường và dự báo tháng
Bản tin Thị trường giá cả vật tư
Tìm
Danh mục
Kinh doanh - Marketing
Kinh tế quản lý
Biểu mẫu - Văn bản
Tài chính - Ngân hàng
Công nghệ thông tin
Tiếng anh ngoại ngữ
Kĩ thuật công nghệ
Khoa học tự nhiên
Khoa học xã hội
Văn hóa nghệ thuật
Y tế sức khỏe
Văn bản luật
Nông lâm ngư
Kĩ năng mềm
Luận văn - Báo cáo
Giải trí - Thư giãn
Tài liệu phổ thông
Văn mẫu
NGÀNH HÀNG
NÔNG NGHIỆP, THỰC PHẨM
Gạo
Rau hoa quả
Nông sản khác
Sữa và sản phẩm
Thịt và sản phẩm
Dầu thực vật
Thủy sản
Thức ăn chăn nuôi, vật tư nông nghiệp
CÔNG NGHIỆP
Dệt may
Dược phẩm, Thiết bị y tế
Máy móc, thiết bị, phụ tùng
Nhựa - Hóa chất
Phân bón
Sản phẩm gỗ, Hàng thủ công mỹ nghệ
Sắt, thép
Ô tô và linh kiện
Xăng dầu
DỊCH VỤ
Logistics
Tài chính-Ngân hàng
NGHIÊN CỨU THỊ TRƯỜNG
Hoa Kỳ
Nhật Bản
Trung Quốc
Hàn Quốc
Châu Âu
ASEAN
BẢN TIN
Bản tin Thị trường hàng ngày
Bản tin Thị trường và dự báo tháng
Bản tin Thị trường giá cả vật tư
Thông tin
Tài liệu Xanh là gì
Điều khoản sử dụng
Chính sách bảo mật
0
Trang chủ
Khoa Học Tự Nhiên
Toán học
[Toán Học Cao Cấp] Rút - Tối Ưu Phương Trình Phần 8
Đang chuẩn bị liên kết để tải về tài liệu:
[Toán Học Cao Cấp] Rút - Tối Ưu Phương Trình Phần 8
Vân Sơn
95
19
pdf
Không đóng trình duyệt đến khi xuất hiện nút TẢI XUỐNG
Tải xuống
Bài 7. Hãy giải các BTQHTP sau đây bằng phương pháp thích hợp (phương pháp Wolfe hoặc phương pháp thiết lập bài toán bù): a. Min f(x) = x12 + x22 – 8x1 – 4x2, với các ràng buộc x1 + x2 ≤ 2 x1, x2 ≥ 0. b. Min f(x) = x12 + x22 – x1x2 – 3x1, với các ràng buộc x1 + x2 ≤ 2 x1, x2 ≥ 0. | Bài 7. Hãy giải các BTQHTP sau đây bằng phương pháp thích hợp phương pháp Wolfe hoặc phương pháp thiết lập bài toán bù a. Min f x x12 x22 - 8xi - 4x2 với các ràng buộc X1 x2 2 xi x2 0. b. Min f x x12 x22 - x1x2 - 3x1 với các ràng buộc x1 x2 2 x1 x2 0. c. Min f x 2x12 4x22 - 4x1x2 - 15x1 - 30x2 với các ràng buộc x1 2x2 30 x1 x2 0. Bài 8. Hãy giải các BTQHTP sau đây bằng phương pháp thích hợp phương pháp Wolfe hoặc phương pháp thiết lập bài toán bù a. Min f x 2x1 - 4x2 x12 - 2x1x2 x22 với các ràng buộc - x1 x2 1 x1 - 2x2 4 xb x2 0. b. Min f x -4x1 - 6x2 x12 - 2x1x2 x22 với các ràng buộc 2x1 x2 2 - x1 x2 4 xb x2 0. c. Min f x 5x1 6x2 - 12x3 2x12 4x22 6x32 - 2x 2 - 6x1x3 8x2x3 với các ràng buộc x1 2x2 x3 6 x1 x2 x3 16 -x1 2x2 4 X1 x2 x3 0. Bài 9. Lập chương trình máy tính phương pháp Wolfe hoặc phương pháp thiết lập bài toán bù sử dụng ngôn ngữ Pascal hay C sau đó chạy kiểm thử cho bài tập 7. Bài 10. Giải các bài toán sau đây bằng phương pháp quy hoạch tách a. Min f x exp x1 x12 4x1 2x22 - 6x2 2x3 134 với các ràng buộc sau p exp x2 6x3 15 x14 - x2 5x3 25 ự x1 4 0 x2 2 0 x3. Cho biết các điểm lưới là 0 2 4 cho x1 và 0 1 2 cho x2. b. Min f x exp 2x1 x22 x3 - 2 2 với các ràng buộc sau x1 x2 x3 6 .xb x2 x3 0. bằng cách đổi biến thích hợp với các điểm lưới tùy chọn. Bài 11. Giải các bài tập sau đây bằng phương pháp quy hoạch hình học a. Min f x 2x1-1 x22 x14x2-2 4x12 với điều kiện x1 x2 0. b. Min f x 5x1x2-1x32 x1-2x3-1 10x23 2x1-1x2x3-3 với điều kiện x1 x2 x3 0. c. Min f x 4x1-1x2- 0 5 với điều kiện x1 2x22 1 và x1 x2 0. Bài 12. Hãy tìm hiểu cơ sở và phát biểu các thuật toán tổng quát cho quy hoạch tách và quy hoạch hình học. 135 Chương VI Một số vấn đề cơ sở của lý thuyết quy hoạch lồi và quy hoạch phi tuyến Xét bài toán quy hoạch phi tuyến tổng quát Min Max f x với điều kiện x eD x eR1 g x 0 i 1 m1 gi x 0 i m1 1 m . Véc tơ x xb.xn e D được gọi là véc tơ quyết định hay phương án khả thi hoặc phương án nếu vắn tắt hơn Xj là các biến quyết định Vj 1 n . Người giải bài toán
TÀI LIỆU LIÊN QUAN
Đề thi cuối học kỳ I năm học 2015-2016 môn Toán cao cấp A1 - Đại học Sư phạm Kỹ thuật TP. HCM
Đề thi môn Toán cao cấp A1 năm 2014-2015 - Đại học Sư phạm Kỹ thuật TP. HCM
Đề thi môn Toán cao cấp A3 năm 2013-2014 - Đại học Sư phạm Kỹ thuật TP. HCM
Đáp án môn Toán cao cấp A2 - Đại học Sư phạm Kỹ thuật TP. HCM
Đề thi môn Toán cao cấp C2 năm học 2013-2014 - Đại học Sư phạm Kỹ thuật TP. HCM
Đề thi cuối học kỳ I năm học 2016-2017 môn Toán cao cấp A1 - Đại học Sư phạm Kỹ thuật TP. HCM
Đề thi kết thúc học phần Toán cao cấp 1: Đề thi số 01
Đề thi kết thúc học phần Toán cao cấp 1: Đề thi số 02
Đề thi kết thúc học phần Toán cao cấp 1: Đề thi số 03
Đề thi giữa kỳ Toán cao cấp C1 (trình độ đại học): Mã đề thi 134
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.