Báo cáo tài liệu vi phạm
Giới thiệu
Kinh doanh - Marketing
Kinh tế quản lý
Biểu mẫu - Văn bản
Tài chính - Ngân hàng
Công nghệ thông tin
Tiếng anh ngoại ngữ
Kĩ thuật công nghệ
Khoa học tự nhiên
Khoa học xã hội
Văn hóa nghệ thuật
Sức khỏe - Y tế
Văn bản luật
Nông Lâm Ngư
Kỹ năng mềm
Luận văn - Báo cáo
Giải trí - Thư giãn
Tài liệu phổ thông
Văn mẫu
THỊ TRƯỜNG NGÀNH HÀNG
NÔNG NGHIỆP, THỰC PHẨM
Gạo
Rau hoa quả
Nông sản khác
Sữa và sản phẩm
Thịt và sản phẩm
Dầu thực vật
Thủy sản
Thức ăn chăn nuôi, vật tư nông nghiệp
CÔNG NGHIỆP
Dệt may
Dược phẩm, Thiết bị y tế
Máy móc, thiết bị, phụ tùng
Nhựa - Hóa chất
Phân bón
Sản phẩm gỗ, Hàng thủ công mỹ nghệ
Sắt, thép
Ô tô và linh kiện
Xăng dầu
DỊCH VỤ
Logistics
Tài chính-Ngân hàng
NGHIÊN CỨU THỊ TRƯỜNG
Hoa Kỳ
Nhật Bản
Trung Quốc
Hàn Quốc
Châu Âu
ASEAN
BẢN TIN
Bản tin Thị trường hàng ngày
Bản tin Thị trường và dự báo tháng
Bản tin Thị trường giá cả vật tư
Tìm
Danh mục
Kinh doanh - Marketing
Kinh tế quản lý
Biểu mẫu - Văn bản
Tài chính - Ngân hàng
Công nghệ thông tin
Tiếng anh ngoại ngữ
Kĩ thuật công nghệ
Khoa học tự nhiên
Khoa học xã hội
Văn hóa nghệ thuật
Y tế sức khỏe
Văn bản luật
Nông lâm ngư
Kĩ năng mềm
Luận văn - Báo cáo
Giải trí - Thư giãn
Tài liệu phổ thông
Văn mẫu
NGÀNH HÀNG
NÔNG NGHIỆP, THỰC PHẨM
Gạo
Rau hoa quả
Nông sản khác
Sữa và sản phẩm
Thịt và sản phẩm
Dầu thực vật
Thủy sản
Thức ăn chăn nuôi, vật tư nông nghiệp
CÔNG NGHIỆP
Dệt may
Dược phẩm, Thiết bị y tế
Máy móc, thiết bị, phụ tùng
Nhựa - Hóa chất
Phân bón
Sản phẩm gỗ, Hàng thủ công mỹ nghệ
Sắt, thép
Ô tô và linh kiện
Xăng dầu
DỊCH VỤ
Logistics
Tài chính-Ngân hàng
NGHIÊN CỨU THỊ TRƯỜNG
Hoa Kỳ
Nhật Bản
Trung Quốc
Hàn Quốc
Châu Âu
ASEAN
BẢN TIN
Bản tin Thị trường hàng ngày
Bản tin Thị trường và dự báo tháng
Bản tin Thị trường giá cả vật tư
Thông tin
Tài liệu Xanh là gì
Điều khoản sử dụng
Chính sách bảo mật
0
Trang chủ
Khoa Học Tự Nhiên
Toán học
[Toán Học Cao Cấp] Rút - Tối Ưu Phương Trình Phần 9
Đang chuẩn bị liên kết để tải về tài liệu:
[Toán Học Cao Cấp] Rút - Tối Ưu Phương Trình Phần 9
Nhã Trúc
103
19
pdf
Không đóng trình duyệt đến khi xuất hiện nút TẢI XUỐNG
Tải xuống
Định lý 18. Cho một tập lồi khác rỗng S ⊂ Rn và f: S → R là hàm lồi. Lúc đó, ∀ x ∈ S và hướng bất kỳ d ∈ R n sao cho x + λd ∈ S với λ 0 đủ nhỏ, luôn tồn tại đạo hàm theo hướng: f (x + λd) − f (x) . f/( x ,d) = lim λ→0+ λ | Định lý 18. Cho một tập lồi khác rỗng S c Rn và f S R là hàm lồi. Lúc đó V x e S và hướng bất kỳ d e Rn sao cho x Xd e S với X 0 đủ nhỏ luôn tồn tại đạo hàm theo hướng f x d limf x Xd -f x . X o X Chứng minh Chọn X2 X1 0 và đủ nhỏ. Do f là hàm lồi nên ta có f x X1d f k x X2d l X 2 V ỈLf x X2d 1 --M f x . X 2 V X 2 J Từ đây suy ra f x X d - f x f x X22d - f x . Như vậy hàm số X1 X2 f x Xd - f x X phụ thuộc X 0 là hàm không giảm. Bởi vậy ta có giới hạn f x Xd -f x . f x Xd -f x _ _ li m ------_2 2 inf -----------ự đpcm . xLò X X 0 X 3.2. Dưới vi phân của hàm lồi Định nghĩa 9. Cho f S R là hàm lồi. Lúc đó Epigraph của f là tập hợp Epi f x y x e S y f x c Rn 1. Hypograph của f là tập hợp Hyp f x y x e S y f x c Rn 1. Xem minh họa hình VI.7. Hình VI.7. Minh họa Epigraph và Hypograph Có thể chứng minh được tính chất sau đây Cho f S R là hàm lồi lúc đó Epi f là tập lồi và ngược lại. Định nghĩa 10 khái niệm dưới vi phân . Xét tập lồi khác rỗng S c Rn và f S R là hàm lồi. Lúc đó véc tơ ệ e Rn được gọi là dưới vi phân của f tại x nếu f x f x ệT x - x Vx e S. Ví dụ 4. i Xét hàm y f x x2. Lúc đó véc tơ ệ 2 x e R1 chính là dưới vi phân của hàm đã cho tại x trên hình VI.8a ệT tga . 153 ii Xét hàm y f x I x I. V x 0 véc tơ ệ sign x e R1 chính là dưới vi phân duy nhất của hàm đã cho tại x trên hình VI.8b ệT tgn 1 tại x 0 . Còn tại x 0 tồn tại vô số dưới vi phân S e -1 1 c R1. Định lý 19 về sự tồn tại dưới vi phân . Cho f S R là hàm lồi. Lúc đó với V x e int S luôn tồn tại véc tơ S sao cho siêu phẳng H x y y f x T x -x là siêu phẳng tựa của Epi f tại x f x tức là f x f x ệT x - x Vx e S. Do đó ệ chính là dưới vi phân tại x. Chứng minh Ta đã biết Epi f là tập lồi và x f x eổ Epi f biên của Epi f. Ngoài ra theo định lý 7 về siêu phang tựa của tập lồi tại điểm biên lúc đó tồn tại véc tơ p ệ0 p 0 sao cho V x y e Epi f luôn có x - x pT y - f x 0 . 6.11 Rõ ràng p không thể dương được vì nếu trái lại chọn y dương đủ lớn thì suy ra 6.11 là sai. Ta đi chứng minh p 0 bằng phương pháp phản .
TÀI LIỆU LIÊN QUAN
Đề thi cuối học kỳ I năm học 2015-2016 môn Toán cao cấp A1 - Đại học Sư phạm Kỹ thuật TP. HCM
Đề thi môn Toán cao cấp A1 năm 2014-2015 - Đại học Sư phạm Kỹ thuật TP. HCM
Đề thi môn Toán cao cấp A3 năm 2013-2014 - Đại học Sư phạm Kỹ thuật TP. HCM
Đáp án môn Toán cao cấp A2 - Đại học Sư phạm Kỹ thuật TP. HCM
Đề thi môn Toán cao cấp C2 năm học 2013-2014 - Đại học Sư phạm Kỹ thuật TP. HCM
Đề thi cuối học kỳ I năm học 2016-2017 môn Toán cao cấp A1 - Đại học Sư phạm Kỹ thuật TP. HCM
Đề thi kết thúc học phần Toán cao cấp 1: Đề thi số 01
Đề thi kết thúc học phần Toán cao cấp 1: Đề thi số 02
Đề thi kết thúc học phần Toán cao cấp 1: Đề thi số 03
Đề thi giữa kỳ Toán cao cấp C1 (trình độ đại học): Mã đề thi 134
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.