Đang chuẩn bị liên kết để tải về tài liệu:
Báo cáo toán học: "A Carleson measure theorem for the Bergman space on the ball "

Không đóng trình duyệt đến khi xuất hiện nút TẢI XUỐNG

Tuyển tập các báo cáo nghiên cứu khoa học ngành toán học tạp chí Journal of Operator Theory đề tài: Một biện pháp Carleson định lý cho không gian Bergman trên quả bóng. | J. OPERATOR THEORY 7 1982 157-165 Copyright by INCREST. 1982 A CARLESON MEASURE THEOREM FOR THE BERGMAN SPACE ON THE BALL JOSEPH A. CIMA and WARREN R. WOGEN Let B be the closed unit disc in the complex plane c and let ỊẤ be a finite measure on B. For 0 e 0 2tt h e 0 1 let 2 0 A u e B i 1 - 7 z 1 e argz 0 h . The measure ii is called a Carleson measure if there is a constant c 0 such that f.t Q O 0 Ch V 0 h . In 1 it is shown that n is a Carleson measure if and only if the injection mapping from the Hardy space H- into F 2 dju is bounded i.e. there is a C 0 so that for hl-p t l z l2dp z c C V F. J J 2tĩ B 0 Several analogues of the Carleson theorem have subsequently been obtained. Hormander 6 proved a version of this result for the Hardy space of the unit ball B in C . Then Carleson 2 produced an example to show that the result is false for the Hardy space of the polydisc. In a more current paper Hastings 5 has proven a Carleson type theorem for the Bergman space of the polyđisc. Further Stegenga 9 has obtained analogous results for certain weighted Bergman spaces. In this paper we prove a Carleson theorem for the Bergman space of the unit ball in C . We also outline a short proof of Hormander s result 6 . As an application we consider the question of compactness of Toeplitz operators on Bergman spaces. After the results of this paper were obtained Professor Peter Duren pointed out the Hormander reference 6 . We wish to thank him for this reference. 158 JOSEPH A. C1MA and WARREN R. WOGEN 1. THE PRINCIPAL THEOREM Let B be the closed unit ball in cn Bl B and let be the boundary of B . If Í is a measure on B and p A 1 then Lfp dp is the lAịd ì closure of the poly normals in z - El .- . Further let m z denote volume measure on C . Fix n 1 and p n. Consider measures defined by the equations d v z 1 - zp dm z z e B d2 zx .- 1 - Ex e Bl. For 0 t 1 and I 6 F let W Jze B 1 - z . The notation Ộ denotes complex inner product in C . A measure Í on B is a 1 -Carleson measure if

TÀI LIỆU LIÊN QUAN
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.