Đang chuẩn bị liên kết để tải về tài liệu:
Báo cáo toán học: "Ergodic theory and the functional equation (I - T)x = y "

Không đóng trình duyệt đến khi xuất hiện nút TẢI XUỐNG

Tuyển tập các báo cáo nghiên cứu khoa học ngành toán học tạp chí Journal of Operator Theory đề tài: Ergodic lý thuyết và phương trình chức năng (I - T) x = y. | J. OPERATOR THEORY 10 1983 153-166 Copyright by INCREST 1983 ERGODIC THEORY AND THE FUNCTIONAL EQUATION 7 - T x y MICHAEL LIN and ROBERT SINE The problem of solving the functional equation Z T x y for a given linear operator T on a Banach space X and a given y e X appears in many areas of analysis and probability. The well-known Neumann series gives ự T -1 when T 1. When II 7 11 J the problem is first to know if y e I T X and then to find the solution X. The solution is usually found using an iterative procedure see 4 5 6 16 . We are interested in the convergence of n k - 1 x - n ỵ y y TJy to the solution X and obtain the precise necessary and sufficient k .1 -0 conditions Corollary 3 . The necessa y condition sup y TJy oo is shown to be sufficient if T for some m 0 is weakly compact. An example shows that otherwise the condition need not be sufficient. The reflexive case appears in 1 2 3 . We then solve the problem of existence in the case of a dual operator on a dual space obtaining as a corollary an application to Markov operators. Next we look at the same problem for Tf s f Os where 7 is induced on a suitable function space by a measurable map 0. A new ergodic proof for 0 a minimal continuous map of a Hausdorff space is given. Finally we obtain results for positive conservative contractions Markov operators on Lỵ S z Ì . In that case we look also at solutions which are finite a.e. though not necessary in Z.J. For the general Banach space approach we need the mean ergodic theorem-. If Tfn 1 n 1 0 strongly and sup y TJ n jto oo then 1 n-l Ì _ . - X - - y TJX converges y Ty y Z T X. n J-X J 154 MICHAEL LIN and ROBERT SINE We call T mean ergodic if the above subspace is all of X. We mention the uniform ergodic theorem 19 M 1 T X is closed converses uniformly. k- 0 Ị n k--ỉ In that case I T is invertible on Z T X and - yj J T converges n k 1 j 0 uniformly to I T -1 on Z T X which is a generalization of the Neumann series theorem. Theorem 1. Let T be mean .

TÀI LIỆU LIÊN QUAN
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.