Đang chuẩn bị liên kết để tải về tài liệu:
Báo cáo toán học: " On the shadow of squashed"

Không đóng trình duyệt đến khi xuất hiện nút TẢI XUỐNG

Tuyển tập các báo cáo nghiên cứu khoa học ngành toán học tạp chí toán học quốc tế đề tài: On the shadow of squashed. | On the shadow of squashed families of k-sets Frederic Maire maire@f it.qut.edu.au Neurocomputing Research Center Queensland University of Technology Box 2434 Brisbane Qld 4001 Australia Abstract The shadow of a collection A of k-sets is defined as the collection of the k 1 -sets which are contained in at least one k-set of A. Given A the size of the shadow is minimum when A is the family of the first k-sets in squashed order by definition a k-set A is smaller than a k-set B in the squashed order if the largest element of the symmetric difference of A and B is in B . We give a tight upper bound and an asymptotic formula for the size of the shadow of squashed families of k-sets. Submitted January 15 1995 Accepted August 25 1995. AMS Subject Classification. 04A20 03E05 05A20. 1 Introduction A hypergraph is a collection of subsets called edges of a finite set S. If a hypergraph A is such that Ai Aj 2 A implies Aị 2 Aj then A is called an antichain. In other words A is a collection of incomparable sets. Antichains are also known under the names simple hypergraph or clutter. The shadow of a collection A of k-sets set of size k is defined as the collection of the k 1 -sets which are contained in at least one k-set of A. The shadow of A is denoted by A A . In the following we assume that S is a set of integers. The squashed order is defined on the the set of k-sets. Given two k-sets A and B we say that A is smaller than B in the squashed order if the largest element of the symmetric difference of A and B is in B. The first 3-sets in the squashed order are 1 2 3 1 2 4 1 3 4 2 3 4 1 2 5 1 3 5 . Let Fk x denote the family of the first x k-sets in the squashed order. We will prove the following. THE ELECTRONIC .JOURNAL OF COMBINATORICS 2 1995 R16 2 Theorem 1 If x then A Fk x kx - x x - 1 X Qntk where qn.k k n -1 n k n k 1 Equality holds when x 0 or x 0 Theorem 2 When x 1 A Fk x -p x1 k The squashed order is very useful when dealing with the size of the shadow of a collection .

TÀI LIỆU LIÊN QUAN
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.