Đang chuẩn bị liên kết để tải về tài liệu:
Báo cáo toán học: " Frankl-F¨ redi Type Inequalities for Polynomial Semi-lattices u Jin"

Không đóng trình duyệt đến khi xuất hiện nút TẢI XUỐNG

Tuyển tập các báo cáo nghiên cứu khoa học ngành toán học tạp chí toán học quốc tế đề tài: Frankl-F¨ redi Type Inequalities for Polynomial Semi-lattices u Jin. | Frankl-Fiiredi Type Inequalities for Polynomial Semi-lattices Jin Qian and Dijen K. Ray-Chaudhuri1 Department of Mathematics The Ohio State University Submitted April 2 1997 Accepted October 20 1997 Abstract Let X be an n-set and L a set of nonnegative integers. F a set of subsets of X is said to be an L -intersection family if and only if for all E F 2 F E 0 FI 2 L. A special case of a conjecture of Frankl and Ftiredi 4 states that if L 1 2 . kg k a positive integer then F pk 0 n x . Here F denotes the number of elements in F. Recently Ramanan proved this conjecture in 6 We extend his method to polynomial semi-lattices and we also study some special L-intersection families on polynomial semi-lattices. Finally we prove two modular versions of Ray-Chaudhuri-Wilson inequality for polynomial semi-lattices. 1. Introduction Throughout the paper we assume k n 2 N In 1 2 . ng c N where N denotes the set of positive integers. In this part we briefly review the concept of polynomial semi-lattice introduced by Ray-Chaudhuri and Zhu in 8 The definition of polynomial semi-lattice given here is equivalent to but simpler than that in 8 . For the convenience of the reader we also include various examples of polynomial semi-lattices. Let X be a finite nonempty partially ordered set having the property that X is a semi-lattice i.e. for every x y 2 X there is a unique greatest lower bound of x and y denoted by x A y. If x y and x y we write x y. We 1e-mail addresses qian@math.ohio-state.edu dijen@math.ohio-state.edu THE ELECTRONIC JOURNAL OF COMBINATORICS 4 1997 R28 2 also assume that X has a height function l x where l x 1 is the number of terms in a maximal chain from the least element 0 to the element x including the end elements in the count. Let n be the maximum of l x for all the x in X. Dehne Xi x 2 XI l x i 0 i n and XQ 0 . Then X U qX is a partition and the subsets Xi s are called hbres. The integer n is said to be the height of X . X is called a polynomial semi-lattice if

TÀI LIỆU LIÊN QUAN
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.