Đang chuẩn bị liên kết để tải về tài liệu:
Báo cáo toán học: " An Eigenvalue Characterization of Antipodal Distance-Regular Graph"

Không đóng trình duyệt đến khi xuất hiện nút TẢI XUỐNG

Tuyển tập các báo cáo nghiên cứu khoa học hay nhất của tạp chí toán học quốc tế đề tài: An Eigenvalue Characterization of Antipodal Distance-Regular Graphs. | An Eigenvalue Characterization of Antipodal Distance-Regular Graphs M. A. Fiol Departament de Matemàtica Aplicada i Telematica Universitat Politàcnica de Catalunya Jordi Girona 1-3 Màdul C3 Campus Nord 08034 Barcelona Spain email fiol@mat.upc.es Submitted July 19 1997 Accepted November 14 1997. Abstract Let r be a regular connected graph with n vertices and d 1 distinct eigenvalues. As a main result it is shown that r is an r-antipodal distanceregular graph if and only if the distance graph rd is constituted by disjoint copies of the complete graph Kr with r satisfying an expression in terms of n and the distinct eigenvalues. AMS subject classifications. 05C50 05E30 1 Introduction The core of spectral graph theory is to describe the properties of a graph by its spectrum and find conditions that cospectral graphs may not share. For instance consider the following question Can we see from the spectrum of a graph with diameter D say whether it is distance-regular Since a long time it was known that the answer to this question is yes when D 2 and not if D 4. Then on the basis of these results it had been conjectured cf. Cvetkovic Doob and H. Sachs 5 that the answer is also yes for D 3 but recently Haemers 19 disproved the conjecture constructing some counterexamples. So in general the spectrum is not sufficient to assure distance-regularity and if we want to go further we must require the graph to satisfy some additional conditions. In this direction Van Dam and Haemers 8 showed that in the case D 3 such a condition could be the number nd of vertices THE ELECTRONIC .JOURNAL OF COMBINATORICS 4 1997 R30 2 at extremal distance D d where d 1 is the number of distinct eigenvalues from each vertex. Independently Garriga Yebra and the author 13 settled the case nd 1 for any value of D that is the case of 2-antipodal distance-regular graphs. Finally Garriga and the author 11 solved the general case characterizing distance-regular graphs as those regular graphs whose number of

TÀI LIỆU LIÊN QUAN
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.