Đang chuẩn bị liên kết để tải về tài liệu:
Báo cáo toán học: "Monotonic subsequences in dimensions higher than one"

Không đóng trình duyệt đến khi xuất hiện nút TẢI XUỐNG

Tuyển tập các báo cáo nghiên cứu khoa học hay nhất của tạp chí toán học quốc tế đề tài: Monotonic subsequences in dimensions higher than one. | Monotonic subsequences in dimensions higher than one A. M. Odlyzko AT T Labs - Research Murray Hill NJ 07974 email amo@research.att.com J. B. Shearer IBM T. J. Watson Research Center P.O. Box 218 Yorktown Heights NY 10598 email jbs@watson.ibm.com R. Siders AT T Labs - Research Murray Hill NJ 07974 email siders@math.umn.edu Dedicated to Herb Wilf on the occasion of his 65-th birthday Submitted August 31 1996 Accepted November 10 1996 Abstract The 1935 result of Erdos and Szekeres that any sequence of n2 1 real numbers contains a monotonic subsequence of n 1 terms has stimulated extensive further research including a paper of J. B. Kruskal that defined an extension of monotonicity for higher dimensions. This paper provides a proof of a weakened form of Kruskal s conjecture for 2-dimensional Euclidean space by showing that there exist sequences of n points in the plane for which the longest monotonic subsequences have length n1 2 3. Weaker results are obtained for higher dimensions. When points are selected at random from reasonable distributions the average length of the longest monotonic subsequence is shown to be 2n1 2 as n 1 for each dimension. AMS-MOS Subject Classification Primary 05A05 Secondary 06A07 60C05. Monotonic subsequences in dimensions higher than one A. M. Odlyzko AT T Labs - Research Murray Hill NJ 07974 email amo@research.att.com J. B. Shearer IBM T. J. Watson Research Center Yorktown Heights NY 10598 email jbs@watson.ibm.com R. Siders AT T Labs - Research Murray Hill NJ 07974 email siders@math.umn.edu Dedicated to Herb Wilf on the occasion of his 65-th birthday 1. Introduction A sequence y1 . yk of real numbers is said to be monotonic if either y1 y2 yk or y1 y2 yk. A classic theorem of Erdos and Szekeres 4 states that every sequence of nr 1 real numbers has a monotonic subsequence of m 1 terms. Moreover there do exist sequences of m2 real numbers with no monotonic subsequences of length greater than m. This extremal result has led to research on a

TÀI LIỆU LIÊN QUAN
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.